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Abstract. In this work, a novel approximate analytical technique of computing the damped backbone curves resulting by the 

inclusion of viscous damping is discussed. Traditionally, the analysis of nonlinear systems involves studying the relation 

between the nonlinear frequency and the resulting vibration amplitudes, this can be performed by computing the conservative 

(undamped-unforced) backbone curves of the system and comparing them to the numerically computed forced damped 

frequency responses. The proposed method is based on a variation of Wentzel, Kramers & Brilloun (WKB) and Burton 

methods and can be directly applied to both SDOF and MDOF systems in order to compute the damped backbone curves of 

the system. 
  

Introduction 
Nonlinear oscillators are widely used for modelling engineering applications including single-degree-of-

freedom (SDOF) and multi-degree-of-freedom (MDOF) systems. For instance, single mode approximations 

of some structural elements such as cables and beams are typical examples of SDOF systems, while MDOF 

systems involve innumerable applications. One important aspect of such nonlinear systems is the inclusion of 

viscous damping and how it can affect their dynamical behaviour. Thus, in this work, a novel approximate 

analytical technique of computing the damped backbone curves resulting by the inclusion of viscous damping 

is discussed. The analysis of such nonlinear systems involves studying the relation between the nonlinear 

frequency and the resulting vibration amplitudes, this can be performed by computing the conservative 

backbone curves of the system and comparing them to the numerically computed forced damped frequency 

responses, [1]. Although this technique can be highly accurate in the case of undamped and very lightly damped 

systems, increasing the damping reduces the matching between the conservative backbone curves and the 

forced damped frequency response curves, hence, less accuracy is achieved in the determination of important 

features, such as the bifurcation points of the system. In the literature, following the initial work of Krack, [2], 

several works are introduced to compute the damped backbone curves, usually by adding a fictitious force to 

the equation of motion in order to introduce an equivalent system by eliminating the viscous damping term.  
 

Results and discussion  
The proposed technique is based on Burton work [3] and can be directly applied to any weak nonlinear system 

in order to generate the damped backbone curves. For instance, the Duffing oscillator with viscous damping is 

discussed in Figure 1 which shows a comparison between the two backbone curves and the numerically 

computed forced response (using COCO toolbox in Matlab), the figure clearly shows that, comparing with the 

numerical forced response, the damped backbone curve is more accurate than the conservative backbone curve.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Comparison between conservative and damped backbone curves for Duffing oscillator (=0.1, = 0.1, n= 2 rad/s) 
 

Using the proposed technique applied symbolically (using Maple software), the work will be generalised to 

include any order of the polynomial nonlinear terms. Finally, some case studies are discussed in order to 

investigate the dynamics of nonlinear SDOF and MDOF systems by considering the resulting damped 

backbone curves. 
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