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Abstract. In this work we consider an unfolding of a normal form of the Lorenz system near a triple-zero singularity.
We are interested in the analysis of a double-zero bifurcation emerging from that singularity. The local study of the double-
zero bifurcation provides partial results that are extended by means of numerical continuation methods. Specifically, a
curve of heteroclinic connections is detected. It has a degenerate point from which infinitely many homoclinic connections
emerge. In this way, we can partially understand the dynamics near the triple-zero singularity.

Introduction

We consider a three-parameter unfolding, that is close to the normal form of the triple-zero bifurcation exhibited
by the Lorenz system, given by

ẋ = y, ẏ = ε1x+ ε2y +Axz +Byz, ż = ε3z + Cx2 +Dz2, (1)

where ε1, ε2, ε3 ≈ 0 and A,B,C,D are real parameters. System (1) exhibits a triple-zero bifurcation when
ε1 = ε2 = ε3 = 0. These equations are also invariant under the change (x, y, z)→ (−x,−y, z).
We remark that several systems studied in the literature appear as particular cases of (1) for certain parameter
choices: the Shimizu-Morioka system [1, 2] and a low-order model of magnetoconvection [3]; a Lorenz-like
system [4, 5]. Moreover, system [6, Eq. (2.7)], under certain conditions, has non-degenerate heteroclinic cycles
that connect the equilibria located on the z-axis.
In our case, if AC 6= 0, we take without loss of generality A = −1, C = 1 :

ẋ = y, ẏ = ε1x+ ε2y − xz +Byz, ż = ε3z + x2 +Dz2. (2)

System (2) can have up to four equilibria, namely E1 = (0, 0, 0), E2 = (0, 0,−ε3/D) if D 6= 0 and E3,4 =(
±
√
−ε1(ε3 +Dε1), 0, ε1

)
if ε1(ε3 + Dε1) < 0. Note that E1 and E2 are placed on the z-axis, that is an

invariant set. Our goal is the analysis of the double-zero bifurcation exhibited by the equilibriumE1 = (0, 0, 0),
when (ε1, ε3) = (0, 0), ε2 6= 0, and its degeneracies.

Results and discussion

By means of numerical continuation methods, the local results can be extended and applied to the study of
(2) when B < 0 and D > 0. In this way, we can partially understand the dynamics around the triple-zero
singularity. We detect non-degenerate heteroclinic cycles, for small values of ε1 and ε3 (when ε2 6= 0), that
are related to a double-zero degeneracy undergone by the origin when (ε1, ε3) = (0, 0). Furthermore, near
the triple-zero singularity, the heteroclinic connection becomes degenerate. This fact, among other global
connections, gives rise to infinite homoclinic orbits that will lead to the existence of chaos (see Fig. 1).
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Figure 1: For ε2 = −1, ε3 = −1, B = −0.1, D = 0.01, geometric Lorenz attractors in system (2) when: (a) ε1 = 3; (b) ε1 = 5; (c)
ε1 = 15; (d) ε1 = 16.3.


