Bifurcations in delayed collocated position control
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Abstract. The delayed position control of a mass is considered which is connected to another body through a linear
spring. The proportional-derivative (PD) control force is subjected to saturation, that introduces a relevant nonlinearity
into the system. The Hopf bifurcation calculation is executed, which shows that the loss of stability is always supercritical;
a closed algebraic expression is presented for the amplitude of the stable self-excited oscillations.

Introduction
The collocated position control of a 2 DoF system is examined (see Fig. 1). Two blocks of masses m; and
my are connected with a linear spring of stiffness k& and an actuator force F' acts on the first block where the
position/velocity sensors are located. The PD controller is subjected to constant time delay 7 and saturates at

(). Because of the time delay, the governing equations take the form of delay-differential equations (DDEs)
(see [1]). The Hopf bifurcation calculation of the system is executed based on the procedures given in [2, 3].
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Figure 1: The mechanical model

Results and discussion
The governing equations of the system assume the form:
mix1 = F + k(.’L‘Q — 371) , Mol = —k(.%'g — 1'1) , (1)

where the time derivative is denoted by dot, and the expression of the saturating control force is

#(2) = Q@ tanb (—le(t - T)Q— Dy (t — 7)) |

Introduce the dimensionless time, characteristic exponent and angular frequency with ¢ = 7t, A = 7A and
@& = Tw, respectively, with the dimensionless parameters: y = ma/mi, a = 7+/k/ma, p = P7%/my,
d = D7/mq, and ¢ = Q*7*/m?. Dropping the tildes, the characteristic equation takes the form:

M4 dX3e™ + a2(1+ A2 4+ pA2%e ™ + a?dre™ + a?pe ™ = 0. 3)
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After an infinite dimensional center manifold reduction, the Hopf bifurcation calculation shows that the bifur-
cation is always supercritical and its amplitude can be expressed as

2(w? — a?)? ' w2a2 + ot a2
A= (2 —a? — jal)? q|sinw |1+ MF}Q — a2y +wcosw (1 — b5 (p—per). @)

Figure 2 shows the stability chart and a typical bifurcation diagram of the system.
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Figure 2: Stability chart and bifurcation diagram. The numbers represent the number of unstable characteristic roots (a« = 1, u = 0.5).
The bifurcation diagram is given for d = 0.5 and ¢ = 0.1 [m].

If £ — O then the stability chart corresponds to the one of the position control of the mass m; only. As k
increases the stable region deteriorates, but the bifurcation remains always supercritical.
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