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Abstract. The delayed position control of a mass is considered which is connected to another body through a linear
spring. The proportional-derivative (PD) control force is subjected to saturation, that introduces a relevant nonlinearity
into the system. The Hopf bifurcation calculation is executed, which shows that the loss of stability is always supercritical;
a closed algebraic expression is presented for the amplitude of the stable self-excited oscillations.

Introduction

The collocated position control of a 2 DoF system is examined (see Fig. 1). Two blocks of masses m1 and
m2 are connected with a linear spring of stiffness k and an actuator force F acts on the first block where the
position/velocity sensors are located. The PD controller is subjected to constant time delay τ and saturates at
Q. Because of the time delay, the governing equations take the form of delay-differential equations (DDEs)
(see [1]). The Hopf bifurcation calculation of the system is executed based on the procedures given in [2, 3].

Figure 1: The mechanical model

Results and discussion

The governing equations of the system assume the form:

m1ẍ1 = F + k(x2 − x1) , m2ẍ2 = −k(x2 − x1) , (1)

where the time derivative is denoted by dot, and the expression of the saturating control force is

F (t) = Q tanh

(
−Px1(t− τ)−Dẋ1(t− τ)

Q

)
, (2)

Introduce the dimensionless time, characteristic exponent and angular frequency with t̃ = τt, λ̃ = τλ and
ω̃ = τω, respectively, with the dimensionless parameters: µ = m2/m1, α = τ

√
k/m2, p = Pτ2/m1,

d = Dτ/m1, and q = Q2τ4/m2
1. Dropping the tildes, the characteristic equation takes the form:

λ4 + dλ3e−λ + α2(1 + µ)λ2 + pλ2e−λ + α2dλe−λ + α2pe−λ = 0 . (3)

After an infinite dimensional center manifold reduction, the Hopf bifurcation calculation shows that the bifur-
cation is always supercritical and its amplitude can be expressed as
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))
(p− pcr) . (4)

Figure 2 shows the stability chart and a typical bifurcation diagram of the system.

Figure 2: Stability chart and bifurcation diagram. The numbers represent the number of unstable characteristic roots (α = 1, µ = 0.5).
The bifurcation diagram is given for d = 0.5 and q = 0.1 [m].
If k → 0 then the stability chart corresponds to the one of the position control of the mass m1 only. As k
increases the stable region deteriorates, but the bifurcation remains always supercritical.
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