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Abstract. Morphological Computation (MC) is based on the intriguing idea that a physical body can itself serve as a
computational device. Specifically, given their strongly nonlinear dynamics, soft robots are considered ideal candidates
for MC. Here we propose a novel nonlinear oscillator network model for a soft manipulator and use it to study MC.
The results primarily indicate that the soft robot, as represented by the model, can serve as an effective computational
resource. Moreover, it is found that the computational efficiency is enhanced when the number of elements in the model
is increased from two to three. The results highlight that the complex nonlinear dynamics, characteristic of soft robots,
can be exploited for MC. Interestingly, they also suggest that a model with larger number of elements better illuminates
its computational capabilities, which also provides a more accurate representation of the dynamics for a soft manipulator.

Introduction

Morphological Computation (MC) refers to using physical bodies (e.g. coupled nonlinear oscillators) as reser-
voirs for computing [2]. The complex nonlinear dynamics of soft robots could potentially be exploited for
MC via computation of a desired output function [1]. Here we propose using a friple element nonlinear cou-
pled oscillator network, with predefined damping and stiffness parameters, as a computational reservoir. This
nonlinear network extends a single element model which comprises a spring-mass damper coupled to a bob.
Referring to our other Abstract in this Conference, the EOM are given in Eqn. (1):
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I(t) = 0.2sin(2m f1t)sin (27 fot)sin(27 fst); u(t) = scale * I(t)
y(t+1) = 0.4y(t) + 0.4y (t)y(t — 1) + 0.613(t) + 0.1
where (; and (2 are damping ratios, R is the mass ratio, r is the ratio of the undamped natural frequencies, € is
a coupling parameter, and f(¢) and 7(¢) are the external force and torque. For MC, the sinusoidal input (I(t)),
the scaled input to the system nodes (u(t)) and second order nonlinear dynamic system used as the output target

function (y(t)) are given by the following expressions, where input frequencies are f; = 2.11, fo =3.73, f3 =
4.33[3]:
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Figure 1: Performance of the morphological devices: Physical System (left), Double Link results (middle), Triple Link results (right)
Results and Discussion

The model is used as the MC device to emulate a second-order nonlinear target function. While maintaining
similar system parameters, performance comparisons are made between the linear regressor, double element,
and triple element models in how well their morphologies are exploited during MC. Upon training and evalua-
tion, the triple element model provides more effective computational abilities over the double element model,
which suggests that a system beholding more complexity and nonlinearity serves as a better computational
device; a visual is provided in the figure. For system parameters of (; = (5 =(3=(4=0.035,r1 =ro =713 =
1,e=0.02, R; =0.02, Ry =0.0199, R3 = 0.0198, and scale = 0.01 for the triple element model, the MSE is
2.4980e-06, compared to the linear regressor which has MSE of 9.7357¢-07.
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