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Abstract. Vertical-axis wind-turbine blades undergo large cyclic loading due to the varying fluid flow magnitude
and direction relative to the blades, as well as cyclic variations in the damping. Structures in a flow can also have self-
excited oscillation. These direct, parametric, and self-excited excitations motivate the consideration of a forced van der
Pol equation with cyclic damping. The initial focus of this work entails an analysis of resonances in the parametrically
damped van der Pol equation by using the method of multiple scales.

Introduction

Our previous study on vertical-axis wind-turbine blades [1] has shown the existence of a periodic damping in the
equation of motion. Allowing for aeroelastic, self excitation is simplified by incorporating quadratic damping,
as in a van der Pol equation. The resulting equation of motion in a single-degree-of-freedom transverse deflec-
tion, x, is given as ẍ+

(
F1 + F2x

2
)
ẋ+F3ẋ

3 +
(
F4 + F5x

2
)
x = F0(t), subject to the periodic external force

F0(t) and the time-varying coefficients of similar frequency ω as Fj = f0j+f1j cos(ωt+φj), j = 0, 1, · · · , 5.
In particular, if only F0(t) = 0 and only F1 is cyclic, the following van der Pol equation with parametric damp-
ing

ẍ+ ε(c0 + c1 cosωt+ x2)ẋ+ ωn
2x = 0. (1)

The variables c0 and c1 are the mean and amplitude of the parametric damping, respectively. The excitation
frequency is ω and the natural frequency is ωn.

Analysis and Results

We seek the approximate solution to Eqn. (1) by using the method of multiple scale [2]. We carry out the
analysis up to the first order by considering the two time scales, T0 = t and T1 = εt, and therefore, expand the
displacement as x(T0, T1) ≈ x0(T0, T1) + εx1(T0, T1). The resulting equations are then

ε0 : D0
2x0 + wn

2x0 = F0(t) (2)

ε1 : D0
2x1 + wn

2x1 = −2D0D1x0 − (c0 + c1 cosωT0 + x0
2)(D0x0) (3)

where Di =
∂

∂Ti
. We obtain the solvability conditions by eliminating the secular terms in the right hand side

of Eqn. (3) to bound x1. The relationship between the excitation and the natural frequencies specifies different
cases of resonance: the non-resonant case when there is no relationship between ω and ωn, primary resonance
when ω ≈ ωn, super-harmonic and sub-harmonic resonances when ω ≈ ωn/m and ω ≈ mωn (m ∈ N),
respectively.
The objective of this work is to study the primary and secondary resonances and investigate the stability of
solution, x, in the space of parameters {c0, c1, ω, ωn}. For example for the van der Pol equation with parametric
damping, Eqn. (1), the steady-state amplitude of the response versus the detuning parameter for different values
of c0, the mean damping, is shown in Fig. 1.
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Figure 1: Subharmonic resonance response curve for parametrically damped van der Pol equation.
We also aim to perform similar analysis for a general nonlinear equation, where we add a nonlinear stiffness
term and direct excitation.
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