An optimal fractional LQR-based control approach applied to a cart-pendulum system

Julio Cesar Basilio^{*}, José Geraldo Telles Ribeiro^{*}, Americo Cunha Jr^{*}, Tiago Roux Oliveira^{*} ^{*} Rio de Janeiro State University – UERJ, Rio de Janeiro - RJ, Brazil

Abstract. The purpose of this work is to verify the possibility of improving the performance of the control of an inverted cart-pendulum system using an approach based on a fractional-order linear quadratic regulator, thus taking into account the control effort to develop a cost function. For this, the linear Pole Placement method is used to calculate the gains of the controller and the GA optimization to calculate the fractional-orders that enhance performance in comparison to the integer-order integrators. The results show that performance index such as integral square error and settling time of the angular position can be improved by 16% and 20%, respectively.

Introduction

Due to its memory characteristics, fractional-order operators can be used to produce robust controllers for dynamical systems [1]-[2]. Therefore, in this work a state-feedback control system based on a linear-quadratic regulator (LQR) [3] is proposed to stabilize an inverted cart-pendulum system (Figure 1), with the aim of exploring its capabilities to improve the performance of the control system using fractional-states and optimizing the gains and fractional-order exponentes by genetic algorithms (GA).

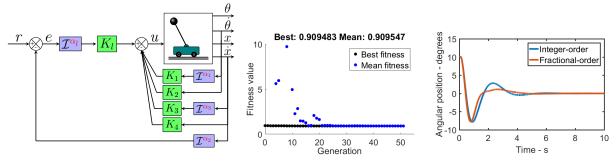


Figure 1: Schematic illustration of the proposed controller for the inverted cart-pendulum system (left). The results of the GA optimization (center) and of the angular position time series with optimal orders for r(t) = 0 (right).

The system dynamics evolves according to the following nonlinear model

$$(J+ml^2)\theta - mgl\sin\theta = -ml\ddot{x}\cos\theta, \qquad (m+M)\ddot{x} + ml\theta\cos\theta - ml\theta^2\sin\theta = u, \qquad (1)$$

where θ is the angular position and x is the cart displacement. The control system is implemented and executed in Simulink, according to the schematic of the controller diagram shown in Figure 1 (left), where r is the reference input signal; e is the tracking error; u is the control signal; K_1 , K_2 , K_3 , K_4 , K_l are the control gains; \mathcal{I}^{α_1} , \mathcal{I}^{α_2} , \mathcal{I}^{α_3} , \mathcal{I}^{α_l} are the integrators, if $\alpha \in \mathbb{Z}$ (integer-order) and if $\alpha \notin \mathbb{Z}$ (fractional order).

The parameters α_1 and α_3 are calculated minimizing with GA, over $0 \le t \le \tau$, the LQR-based cost function taking into account the state variables and the control signal

$$\mathcal{J} = \int_0^\tau \left(x^2(t) + \theta^2(t) + u^2(t) + \dot{x}^2(t) + \dot{\theta}^2(t) \right) dt \,. \tag{2}$$

Results and discussion

The parameters fixed of the controller have been calculated from Pole Placement method, while the fractional exponents α_1 and α_3 have been obtained by GA optimization algorithm. The results are shown in Table 1. The objective function with fractional-order integrators was reduced by 9%, which provided an improvement in the integral square error of x, \dot{x} and θ , the latter with up to 20%. In addition, the settling time of the angular position improved by 16%, as shown in Figure 1 (right), with the comparison of dynamic responses of integer-order and fractional-order. These results show that the fractional-order controller achieved a better response.

Table 1: Performance comparison between integer-order and optimized parameters of the controller.

	integrators order		integral square error				settling time		integral square	π
	α_1	α_3	θ	$\dot{ heta}$	x	\dot{x}	θ	x	u	J
integer-order fractional-order	1.00 1.03	1.00 0.93	0.02 0.017	0.19 0.20	0.26 0.23	0.66 0.51	4.87 4.09	5.07 5.10	23.7 24.4	1.00 0.91

References

- [1] Monje, C. A.; Chen, Y.; Vinagre, B. M.; Xue, D.; Feliu-Batle, V. (2010) Fractional-order systems and controls: fundamentals and applications. Springer-Verlag London.
- [2] Wang, Z. H.; Zheng, Y. G (2009) The optimal form of the fractional-order difference feedbacks in enhancing the stability of a sdof vibration system. *Journal of Sound and Vibration*, **326**: 476-488.
- [3] Wang, Ling et al. (2014) MBPOA-based LQR controller and its application to the double-parallel inverted pendulum system. *Engineering Applications of Artificial Intelligence*, **36**:262-268.