Optimisation Verification for a Millimetre-Scale Vibro-Impact Capsule System
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Abstract. A self-propelled capsule endoscope moving inside patient’s gut is a promising means of minimising patient’s
painful investigation and improve the diagnostic efficiency. This paper presents the study of a millimetre-scale capsule
prototype that can be propelled by external magnetic field via vibration and impact, from both mathematical modelling and
experiment, showing a high progression speed up to 5.3 mm/s. Good agreement between numerical simulation and
experimental investigation demonstrates the feasibility of the proposed driving method for small-bowel capsule endoscopy.

Introduction

Inspired from inchworm's locomotion, the rectilinear motion of the system can be obtained through
overcoming external resistance using a periodically driven internal mass interacting with the main body of
the capsule [1]. To demonstrate this principle, a capsule prototype was implemented at the standard
dimension of the marking-leading capsule endoscope [2], which is 26 mm in length and 11 mm in diameter
as shown in Figure 1(a).
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Figure 1: (a) Photograph and (b) physical model of the capsule prototype. (c) Numerical continuation of the periodic response of the
prototype: the average speed of the prototype V,,, with respect to the excitation period 7, computed for M, = 1.8 g, M. =1.67 g, u =
0.23, G; = 1.6 mm, G, = 0 mm, k£ = 0.062 kN/m, k; = 27.9 kN/m, k, = 53.5 kN/m, ¢ = 0.0156 Ns/m, with the duty cycle D = 0.8 and
the amplitude of excitation F, = 6.8 mN [3]. (d) Experimental results: red line shows the averaged progression speed with respect to
the excitation period 7, and grey dot-lines indicate each individual test.

Results and Discussion

By using nonsmooth multibody dynamics [4], mathematical modelling of the prototype shown in Figure 1(b)
was carried out for speed and propulsive force optimisation. Our analysis presented in Figure 1(c) shows that
the prototype can achieve a high progression speed up to 5.3 mm/s while avoiding the collision between the
inner mass and the capsule, which could reduce the propulsive force on the capsule, hence minimising the
possibility of any harm to the patient [5]. Finally, experimental results are provided in Figure 1(d) to validate
the efficiency of the proposed model as well as the feasibility of the technique for the potential of a ‘live’ and
controllable small-bowel endoscopy.
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