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Abstract. We introduce a class of acquisition functions for sample selection that leads to faster convergence in appli-
cations related to Bayesian experimental design and uncertainty quantification of high-dimensional, strongly nonlinear
systems. The approach follows the paradigm of active learning, whereby existing samples of a black-box function are
utilized to optimize the next most informative sample. The proposed acquisition functions leverage the properties of the
likelihood ratio, a quantity that acts as a probabilistic sampling weight and guides the active-learning algorithm towards
regions of the input space that are deemed most relevant.

Introduction

Modern societies have reached such high levels of sophistication that real-world systems have become far too
intricate to design, optimize and analyze using traditional techniques. Conceptually, these systems can be
viewed as “black boxes” which can be learned using standard machine-learning techniques by making a series
of queries and fitting a Gaussian process (GP) to the resulting input–output pairs. In practice, each query may
take days or even weeks to produce a result, which means that each sample point must be selected gingerly.
This difficulty is exacerbated when the black box has a large number of input parameters, possesses strongly
nonlinear features, or has the ability to generate extreme events [1]. Active-learning methods aim to optimize
the selection of each individual sample instead of drawing them in bulk from a carefully crafted distribution as
with randomized sampling [2]. A critical issue in active learning is the choice of acquisition function, i.e., the
criterion used to select which sample to query next in an optimal manner. We introduce a class of acquisition
functions which guide the search algorithm toward regions of the input space that are associated with unusual
output values associated with rare events. The key issue is that the proposed criteria contain a mechanism that
accounts for the importance of the output relative to the input, and therefore are not limited to extreme-event
quantification but can be applied to any problem related to uncertainty quantification.

Results and discussion

Our goal is to design acquisition functions that put a premium on the output values of previously visited data
points while being computationally tractable. To quantify the importance of the output relative to the input, we
utilize the likelihood ratio w(x) = px(x)/pµ(µ(x)), where px reflects uncertainty in the input and pµ denotes
the pdf of the GP posterior mean conditioned on the input. The likelihood ratio acts as a sampling weight,
assigning to each point x a measure of “relevance” defined in probabilistic terms. We mathematical derive two
novel likelihood-weighted acquisition functions, namely, aIVR-LW(x) = σ−2(x)

∫
cov2(x,x′)w(x′) dx′ and

aUS-LW(x) = σ2(x)w(x), where σ2(x) and cov(x,x′) are the posterior variance and posterior covariance of
the GP model, respectively. To demonstrate the benefits of the likelihood ratio in uncertainty quantification, we
consider the stochastic oscillator of Mohamad and Sapsis [3] and monitor the error e(n) in the estimated pdf
of the mean displacement as a function of the number of samples n collected by the algorithm. Figure 1 shows
that the likelihood ratio helps identify critical regions of the input space more efficiently than otherwise. As
a result, the surrogate model constructed using the likelihood-weighted acquisition functions is able to predict
the statistics of the output much more accurately than with traditional selection criteria.
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(a) Learning with a(x) = σ2(x)
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(b) Learning with a(x) = σ2(x)w(x)
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Figure 1: Progression of the active-learning algorithm (a) without and (b) with the likelihood ratio, as more samples (circles) are added
to the initial dataset (squares); and (c) error in estimated pdf for the proposed criteria (solid) and their unweighted counterparts (dashed).
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