On the mobility of a robot-trajectory process

Friedrich Pfeiffer

Applied Mechanics, TU-Muenchen, Boltzmannstrasse 15, D-85748 Garching, Germany
e-mail: friedrich.pfeiffer@tum.de

Abstract

Discussing the dynamic capabilities of a revolute joint arm robot performing some given trajectory requires a particular consideration of all constraints of robot and process as prescribed by the trajectory. It is possible to transform the equations of motion to a quadratic form allowing some statements referring to the mobility of the robot-trajectory-process. Introduction. For establishing the quadratic form of the equations of motion three steps are needed: First, apply a multibody formulation of the Lagrange I form, second, eliminate the constraint forces by projecting these relations from Cartesian world coordinates z to robot minimal coordinates q and third, project in addition the minimal coordinate dynamics onto the trajectory curvilinear coordinate s. This requires the following equations: $$
\begin{array}{lll} \boldsymbol{M} \ddot{\boldsymbol{z}}+\boldsymbol{f}^{g}-\boldsymbol{f}^{e}-\boldsymbol{f}^{c}=0, & \ddot{\boldsymbol{\Phi}}=\boldsymbol{W}^{T} \ddot{\boldsymbol{z}}+\left[\left(\frac{d \boldsymbol{W}^{T}}{d t}\right) \dot{\boldsymbol{z}}+\left(\frac{d \overline{\boldsymbol{w}}}{d t}\right)\right]=\boldsymbol{W}^{T} \ddot{\boldsymbol{z}}+\hat{\boldsymbol{w}}, & \boldsymbol{z} \in \mathbb{R}^{n_{z}}, \\ \dot{\boldsymbol{\Phi}}=\boldsymbol{W}^{T} \dot{\boldsymbol{z}}+\overline{\boldsymbol{w}}, & \left(\frac{\partial \dot{\boldsymbol{\Phi}}}{\partial \dot{\boldsymbol{q}}}\right)=\boldsymbol{W}^{T}\left(\frac{\partial \boldsymbol{z}}{\partial \boldsymbol{q}}\right)=\left(\frac{\partial \boldsymbol{z}}{\partial \boldsymbol{q}}\right)^{T} \boldsymbol{W}=\mathbf{0}, & \boldsymbol{f}^{c}=-\boldsymbol{W}(\boldsymbol{z}, t) \boldsymbol{\lambda}, \end{array}
$$

$\boldsymbol{\Phi}$ are the constraints and \boldsymbol{f}^{c} the constraint forces, the rest self-explaining. Multiplying the first equation with $\left(\frac{\partial z}{\partial q}\right)^{T}$ thus eliminating the constraint force we come to the minimal form

$$
\boldsymbol{M}_{q} \ddot{\boldsymbol{q}}+\left(\frac{\partial \boldsymbol{z}}{\partial \boldsymbol{q}}\right)^{T} \boldsymbol{M}\left[\frac{\partial}{\partial \boldsymbol{q}}\left(\frac{\partial \boldsymbol{z}}{\partial \boldsymbol{q}}\right) \dot{\boldsymbol{q}}\right] \dot{\boldsymbol{q}}+\left(\frac{\partial \boldsymbol{z}}{\partial \boldsymbol{q}}\right)^{T}\left(\boldsymbol{f}^{g}-\boldsymbol{f}^{e}-\boldsymbol{f}^{a}-\boldsymbol{f}^{p}\right)=\mathbf{0}, \quad \boldsymbol{M}_{q}=\left[\left(\frac{\partial \boldsymbol{z}}{\partial \boldsymbol{q}}\right)^{T} \boldsymbol{M}\left(\frac{\partial \boldsymbol{z}}{\partial \boldsymbol{q}}\right)\right] .
$$

These equations are projected onto the path coordinate s by $\frac{d q}{d s}=\boldsymbol{q}^{\prime}, \ddot{\boldsymbol{q}}=\frac{1}{2} \boldsymbol{q}^{\prime}\left(\dot{s}^{2}\right)^{\prime}+\boldsymbol{q}^{\prime \prime}\left(\dot{s}^{2}\right)$ and $\ddot{s}=\frac{d \dot{s}}{d t}=$ $\left(\frac{d \dot{s}}{d s}\right) \dot{s}=\frac{1}{2}\left(\dot{s}^{2}\right)^{\prime}$ coming out with the quadratic form

$$
\begin{aligned}
& \boldsymbol{A}(s)\left(s^{2}\right)^{\prime}+\boldsymbol{B}(s)\left(s^{2}\right)+\boldsymbol{C}(s)=\boldsymbol{T}(s), \quad(\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{T}) \in \mathbb{R}^{n_{q},} \\
& \boldsymbol{A}(s)=\frac{1}{2} \boldsymbol{M}_{q} \boldsymbol{q}^{\prime}, \quad \boldsymbol{B}(s)=\boldsymbol{M}_{q} q^{\prime \prime}+\boldsymbol{H}_{q}\left(\frac{\partial \boldsymbol{z}}{\partial \boldsymbol{q}}\right)^{T} \boldsymbol{M}\left[\frac{\partial}{\partial \boldsymbol{q}}\left(\frac{\partial \boldsymbol{z}}{\partial \boldsymbol{q}}\right) \boldsymbol{q}^{\prime}\right] \boldsymbol{q}^{\prime}+\boldsymbol{W}_{q}\left(\boldsymbol{W}_{q}^{T} \boldsymbol{M}_{q}^{-1} \boldsymbol{W}_{q}\right)^{-1}\left[\frac{\partial}{\partial \boldsymbol{q}}\left(\frac{\partial \boldsymbol{z}_{0}}{\partial \boldsymbol{q}}\right) \boldsymbol{q}^{\prime}\right] \boldsymbol{q}^{\prime}, \\
& \boldsymbol{C (s)}=\boldsymbol{H}_{q} \boldsymbol{f}_{q}^{e}, \quad \boldsymbol{T}(s)=\boldsymbol{H}_{q} \boldsymbol{f}_{q}^{a}, \quad \boldsymbol{f}_{q}=\left(\frac{\partial \boldsymbol{z}}{\partial \boldsymbol{q}}\right)^{T}\left(\boldsymbol{f}^{g}-\boldsymbol{f}^{e}-\boldsymbol{f}^{a}-\boldsymbol{f}^{p}\right)_{q}, \quad \boldsymbol{H}_{q}=\left[\boldsymbol{E}_{n}-\boldsymbol{W}_{q}\left(\boldsymbol{W}_{q}^{T} \boldsymbol{M}_{q}^{-1} \boldsymbol{W}_{q}\right)^{-1} \boldsymbol{W}_{q}^{T} \boldsymbol{M}_{q}^{-1}\right],
\end{aligned}
$$

The relations above define for each set of the driving forces ($\boldsymbol{T}_{\text {max }}, \boldsymbol{T}_{\text {min }}$) a set of two straight lines in the plane $\left[\left(\dot{s}^{2}\right)^{\prime}\left(\dot{s}^{2}\right)\right.$ for $s=$ constant $]$ for each robot degree of freedom. Considering the intersections of these straight lines results in an area as envelope of all these lines, for each trajectory point $\mathrm{s}=$ constant. Putting these areas together for all points s results in a space limited by ruled surfaces. Only within this space or on the surface motion can take place. It represents an excellent tool for design considerations. The Figure depicts the

Figure 1: Robot/trajectory combination and some Results
principal situation. The robot follows a trajectory, and the results are evaluated applying the above relations. The numerical results shown are for a robot with two arms following a horizontal circle. The middle pictures are the allowed motion areas arranged along the path for various s . The right picture illustrates the motion space formed by ruled surfaces by ordering the areas of the middle picture along s. Applications will be discussed.

References

[1] F. Pfeiffer, Optimal Trajectory Planning for Manipulators, Systems and Control Encyclopedia, Pergamon Press, Oxford, New York, 1990

