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Abstract. Based on symbolic dynamics of Lorenz maps, we prove that, if a conjecture due to Morton is true, then
a countable family of Lorenz knots associated to orbits of points in the renormalization intervals are hyperbolic. This
countable family contains some of the hyperbolic Lorenz knots presented by J. Birman and I. Kofman in [2].

Introduction

Lorenz knots are the closed orbits in the Lorenz system and Lorenz links are finite collections of Lorenz knots.
The introduction of the Lorenz template, by Williams in [9], enabled the study of Lorenz knots and links. It is a
branched 2-manifold with an expanding semi-flow. Guckenheimer and Williams conjectured and later Tucker
proved, that every knot and link in the Lorenz system can be projected into the Lorenz template, [8].
The Lorenz map is the first-return map induced by the semi-flow on the branch line of the Lorenz template .
Periodic orbits in the semi-flow correspond to periodic orbits of the Lorenz map, so symbolic dynamics of the
Lorenz map provide a codification of the Lorenz knots.
A knot is hyperbolic if its complement in S3 is a hyperbolic 3-manifold. Thurston,[7], proved that a knot is
hyperbolic iff it is neither a satellite knot nor a torus knot. One of the goals in the study of Lorenz knots has
been their classification into hyperbolic and non-hyperbolic. Birman and Kofman listed hyperbolic Lorenz
knots taken from a list of the simplest hyperbolic knots. They showed that more than half of the hyperbolic
knots whose complements can be constructed from seven or fewer ideal tetrahedra are Lorenz knots, while
from the 1701936 prime knots having projections with less than 17 crossings, only 20 are Lorenz.
Hugh Morton has conjectured [4],[3] that all Lorenz satellite knots are cablings (satellites where the pattern is
a torus knot) on Lorenz knots. In [6], based on the work of El-Rifai, [4], we derived an algorithm to obtain
Lorenz satellite braids, together with the corresponding words from symbolic dynamics.
In [5] we introduced an operation over Lorenz knots that is related with renormalization of Lorenz maps. From
the point of view of symbolic dynamics, this operation corresponds to the ∗-product defined in [5] and, from
[1], torus knots correspond to words that are irreducible with respect to it. So the ∗-product from symbolic
dynamics of Lorenz maps is a natural way of generating non-torus Lorenz knots.

Figure 1: Lorenz torus knot with sequence LRRLR

Results and discussion

In this work we study an infinite family of Lorenz knots, generated through ∗-products, that contains some of
the knots from Birman-Kofman’s list. We prove that none of these knots is a torus knot and that, provided
Morton’s conjecture is true, it is not a satellite either. So, if Morton’s conjecture is true, they are all hyperbolic.
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