Optimisation Verification for a Millimetre-Scale Vibro-Impact Capsule System

Yang Liu^{*}, Joseph Páez Chávez^{**} and Jiajia Zhang^{*}, Jiyuan Tian^{*}, Bingyong Guo^{*}, Shyam Prasad^{***}

*College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter, UK

**Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador

****Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, UK

Abstract. A self-propelled capsule endoscope moving inside patient's gut is a promising means of minimising patient's painful investigation and improve the diagnostic efficiency. This paper presents the study of a millimetre-scale capsule prototype that can be propelled by external magnetic field via vibration and impact, from both mathematical modelling and experiment, showing a high progression speed up to 5.3 mm/s. Good agreement between numerical simulation and experimental investigation demonstrates the feasibility of the proposed driving method for small-bowel capsule endoscopy.

Introduction

Inspired from inchworm's locomotion, the rectilinear motion of the system can be obtained through overcoming external resistance using a periodically driven internal mass interacting with the main body of the capsule [1]. To demonstrate this principle, a capsule prototype was implemented at the standard dimension of the marking-leading capsule endoscope [2], which is 26 mm in length and 11 mm in diameter as shown in Figure 1(a).

Figure 1: (a) Photograph and (b) physical model of the capsule prototype. (c) Numerical continuation of the periodic response of the prototype: the average speed of the prototype V_{avg} with respect to the excitation period *T*, computed for $M_m = 1.8$ g, $M_c = 1.67$ g, $\mu = 0.23$, $G_1 = 1.6$ mm, $G_2 = 0$ mm, k = 0.062 kN/m, $k_1 = 27.9$ kN/m, $k_2 = 53.5$ kN/m, c = 0.0156 Ns/m, with the duty cycle D = 0.8 and the amplitude of excitation $F_e = 6.8$ mN [3]. (d) Experimental results: red line shows the averaged progression speed with respect to the excitation period *T*, and grey dot-lines indicate each individual test.

Results and Discussion

By using nonsmooth multibody dynamics [4], mathematical modelling of the prototype shown in Figure 1(b) was carried out for speed and propulsive force optimisation. Our analysis presented in Figure 1(c) shows that the prototype can achieve a high progression speed up to 5.3 mm/s while avoiding the collision between the inner mass and the capsule, which could reduce the propulsive force on the capsule, hence minimising the possibility of any harm to the patient [5]. Finally, experimental results are provided in Figure 1(d) to validate the efficiency of the proposed model as well as the feasibility of the technique for the potential of a 'live' and controllable small-bowel endoscopy.

References

- Guo B, Liu Y, Rauf B, Prasad S. 2020 Self-propelled capsule endoscopy for small-bowel examination: proof-of-concept and model verification, *International Journal of Mechanical Sciences*, 174, 105506.
- [2] Liu Y, Guo B, Prasad S. 2019 Resonance enhanced self-propelled capsule endoscopy for small bowel examination, Gut, 68, A31.
- [3] Liu Y, Páez Chávez J, Zhang J, Tian J, Guo B, Prasad S. 2020 The vibro-impact capsule system in millimetre scale: numerical optimisation and experimental verification, *Meccanica*, accepted.
- [4] Guo B, Liu Y. 2019 Three-dimensional map for a piecewise-linear capsule system with bidirectional drifts, *Physica D: Nonlinear Phenomena*, 399, 95-107.
- [5] Guo B, Liu Y, Prasad S. 2019 Modelling of capsule-intestine contact for a self-propelled capsule robot via experimental and numerical investigation, *Nonlinear Dynamics*, 98, 3155-3167.