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Abstract. We introduce a new technique that provides relatively simple approximations for the free and forced vibration
response of weakly nonlinear systems, including those with asymmetric restoring forces. For free vibration, it captures the
correct amplitude-frequency dependence, including cases of non-monotonicity. The method can also be used to determine
the steady-state response of damped, harmonically driven vibrations, including stability results. The method is a blend of
a first order perturbation calculation with higher order harmonic balance (HB), carried out by amplitude expansions. The
HB aspect of the method captures information about higher harmonic overtones and the constant (DC) offset. General
results are derived for an asymmetric system with up to quintic nonlinear stiffness terms. The results are validated using
simulations. This approach will be useful for analyzing a variety of system models with polynomial nonlinearities.

Introduction
We consider weakly nonlinear vibration models with asymmetric restoring forces of the form
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which arise in numerous applications. The structure of the steady state forced vibration response curves of
such systems depends on the amplitude-frequency backbone curve obtained for free undamped (F = 0,Γ = 0)
vibrations. These backbones can exhibit non-monotonic amplitude-frequency relationships. Accurate descrip-
tions of such a backbone curve and of the forced response typically require tedious calculations, e.g., higher
order perturbation methods (cf. [1]) or the use of action-angle coordinates (cf. [2]). In the present work we
derive a method that is a combination of higher order HB and first order averaging to obtain accurate results for
these systems with significantly less effort.

Results and Discussion
The solution process proceeds by assuming that the response is dominated by the fundamental harmonic with
slowly varying amplitude a and phase ϕ. It is also assumed that the amplitudes and phases of the higher
harmonics (HH) and the constant offset (DC) adiabatically track (a, ϕ) and have transients on a timescale that
is neglected in the analysis. The HB method is applied using amplitude expansions, which provides closed
form results for the DC and HH terms. These are then used in a standard first order averaging formulation to
obtain the slow flow equations
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It is important to note that these equations do not correctly capture the transient dynamics of (a, ϕ), but accu-
rately predict their steady state values and their stability.
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Figure 1: Sample response curves.

The backbone curves are described by the ϕ̇ equation with F = 0, ω = ω0.
Sample response curves obtained from this method for a model with only
quadratic and cubic nonlinearities are shown in the Figure (details will be
provided in the presentation). The stable (unstable) branches of the re-
sponse curves are denoted by solid (dashed) curves. The symbols ▶ and ◀
indicate the fundamental harmonic amplitude of the steady-state obtained
from simulations from sweep-up and sweep-down, respectively, obtained
by time integration of Eq.(1) and computing the fundamental harmonic of
the steady-state response. Note that the non-monotonicity feature of this system is not captured by standard
second order perturbation methods, which provide only the γeff term [3]. The example demonstrates the ability
of the method to capture non-monotonic behavior using a first order perturbation method. This method will be
useful for describing the frequency response of asymmetric systems in terms of physical system parameters.
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