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Abstract. Systems governed by a multivariate Langevin equation featuring an exact potential exhibit straightforward dy-
namics but are often difficult to recognize because, after a general coordinate change, the gradient flow becomes obscured
by the Jacobian matrix of the mapping. In this work, a detailed analysis of the transformation properties of Langevin
equations under general nonlinear mappings is presented. We show how to identify systems with exact potentials by
understanding their differential-geometric properties. To demonstrate the power of our method, we use it to derive exact
potentials for broadly studied models of nonlinear deterministic and stochastic oscillations. In selected examples, we visu-
alize the potentials to illustrate how our method enables new analytical descriptions of the classic phenomena of beating,
synchronization and symmetry breaking. Our results imply a broad class of exactly solvable stochastic models which can
be self-consistently defined from given deterministic gradient systems.

Introduction

In stochastic dynamical systems featuring exact potentials driven by white noise, the evolution of a n-dimensional

set of variables x = (x1, . . . , xn)
T : R → R

n over time t ∈ R is governed by following the Langevin equation:

ẋ = −∇V(x, t) + Ξ. (1)

In Eq. (1), (̇) is the time derivative, ∇ is the gradient operator, V : Rn → R is the potential, Fi = −∇iV(x, t)
is the ith component of the restoring force F and the vector Ξ = (ξ1, . . . , ξn)

T : R → R
n contains uncorrelated

white noise sources ξi, i = 1, . . . , n of equal intensity Γ. The individual entries ξi of Ξ are assumed to be

delta-correlated: 〈ξiξi,τ 〉 = Γδ(τ), where 〈·〉 is the expected value operator, (·),τ denotes a positive time shift

by τ and δ is the Dirac delta function. In particular, we are concerned with identifying the presence of an

underlying exact potential in general noise-driven systems taking the form

ẋ = F(x, t) + B(x)Ξ, (2)

where F is a vector- and B a n-by-n tensor field. With the knowledge of F , one can easily deduce if an

exact potential V exists for x by checking the following necessary and sufficient conditions: ∇iFj = ∇jFi

for all i and j 6= i. However, if these conditions are not fulfilled, this does not preclude the existence of an

exact potential governing the original variables that were transformed into x via a certain nonlinear mapping.

We therefore argue that, instead of applying the above conditions, Eq. (2) should be compared to a Langevin

equation with potential after a coordinate change defined by an arbitrary nonlinear mapping x = f(y), see Fig.

1. Below, we give a brief summary of our main results.

Results

Assuming purely additive noise in the equations governing the underlying potential system which transforms

objectively under local rotations and reflections, the resulting transformed Langevin equation with potential

reads, after redefining y → x,

ẋ = −g−1(x)∇Ṽ(x, t) + h−1(x)Ξ, (3)

where the Jacobian of f , J(x) = ∇f(x), was assumed to be nonsingular (invertible) with polar decomposition

J = Qh, Q = Q−T is orthogonal, g = hTh is the positive definite metric tensor, (·)T is the transpose, h is a

positive definite matrix and Ṽ(x, t) = V
(
f(x), t

)
is the transformed potential.

In this work, we derive necessary and sufficient conditions for the existence of an exact potential in a noise-

driven system given by Eq. (2). Our results imply a self-consistent way of modeling noise in given deterministic

gradient flows ẋ = −∇V(x, t), and the resulting models are exactly solvable if the potential is stationary.
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Figure 1: a) Transformation of a domain D under a general nonlinear mapping f . b) Time-dependent potential of a forced Van der Pol
oscillator for different parameter values. A is the amplitude, ϕ is the phase, Φ = ϕ−∆t is the reduced phase and ∆ is the detuning.
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