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Abstract. We show that in a delay-embedded space, the linearized dynamics at a fixed point can be computed solely
from the eigenvalues of the full linearized system independent of its eigenvectors. This observation provides guidelines for
choosing the delay embedding parameters. It also implies that the tangent space of a delay-embedded spectral submanifold
(SSM) is fully determined by the spectrum of the corresponding eigenspace. Thus, we can facilitate the identification of
SSMs from data by prescribing their tangent spaces based on eigenvalue estimates. Applying this procedure to data from
tank sloshing experiments, we identify a 6D SSM and correctly predict the system’s multimodal decay.

Introduction

In data-driven model identification, delay embedding is routinely used. Examples of model reduction methods
based on delay embedding include eDMD [1], HAVOK [2], and false nearest neighbors [3]. Another approach
where delay embedding has been employed is data-driven model reduction to SSMs [4, 5]. Takens’ embedding
theorem states that delay-embedding a signal from a generic observable function on the full phase space at
least 2d + 1 times recovers d-dimensional invariant objects. In practice however, their identification crucially
depends on choosing the timelag and embedding dimension properly. Improved understanding of how invariant
objects are reconstructed in observable spaces can thus aid model order reduction methods significantly.

Results and discussion

We show that on a delay-embedded SSM, the linear part of the dynamics is fully determined by the eigenvalues
of its spectral subspace. Therefore, when the eigenvalues of interest are known, we can facilitate computation
of a delay-embedded SSM by prescribing the tangent space, even if the observable function and the SSM in the
full phase space are unknown. We apply this method to data from sloshing experiments, where a tank partially
filled with water is mounted on a moving platform horizontally excited by a motor, and the surface profile of
the fluid is recorded (Figure 1a) [4]. As the forcing amplitude increases, more sloshing modes are activated.
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Figure 2. Sketch of the experiment. A motor (a) drives an eccentric disk which converts the
rotary motion of the motor via a pushing rod (b) into a quasi-harmonic horizontal oscillation of
the platform. A positioning sensor (c) directly records the motion of the platform on which
the tank (d), two high speed cameras (e) and an USB-camera (f) are mounted. For the
PIV measurements a light sheet (g) is provided by a laser passing through a cylinder lens
(implemented in the stationary laser guiding arm).

dynamics. We find that neither the exact surface shape, nor the frequency spectrum
are useful to determine the nonlinear resonance maxima. The key indicator is the
phase-lag between driving and response. We systematically investigate the role of initial
conditions, characterise the sloshing amplitude with the motion of the liquid’s centre
of mass and directly measure the damping coefficient. The results obtained with our
approach are compared to common approaches used in the literature. The paper is
structured as follows. In the next section, we describe the experimental methods and in
§3 the quantitative characterisation of the sloshing phenomena. In §4 and §5, the Duffing
and multimodal model of sloshing are respectively described and briefly compared to
our measured data. Detailed measurements of large-amplitude sloshing are presented
in §6 with focus on the nonlinear dynamics of the system, including multiplicity and
competition of several flow states. The experimental response curves obtained for several
amplitudes are presented and compared to the Duffing and multimodal model in §7. An
assessment of the strengths and weakness of these models in capturing the experimentally
measured response is given in §8 before the conclusion in §9.

2. Methods

Our experiments were performed in a rectangular container subjected to harmonic
horizontal excitation. As illustrated in figure 1, the flow is quasi-two-dimensional. Slosh-
ing waves reaching from a quasi-planar surface, up to run-up at the tank walls and
wave-breaking were investigated. A distinct feature of the sloshing waves in an oscillated
(or pitched) tank is their asymmetric shape leading to an oscillation of the liquid’s
centre of mass (shown as a red dot in figure 1). Many fundamental studies consider
sloshing in wavemaker tanks (Taylor 1953; Fultz 1962; Chester 1968a). A key difference
between oscillated and wavemaker tanks is that in the latter the primary resonant mode
is symmetric and the liquid’s centre of mass is steady in the lateral direction.

2.1. Experimental setup

A sketch of our experimental setup is shown in figure 2. The tank (width w = 500 mm,
depth l = 50 mm) is mounted on a platform and filled with water at room temperature
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Figure 1: (a) Experimental setup for tank sloshing. (b) Measurement and 6D SSM prediction of the leftmost
point on the surface profile. (c) SSM prediction of full surface profile.

While previous work successfully captured the dynamics of the first mode with a 2D SSM [4, 5], here, we
model the mutlimodal decay on a 6D SSM. The key technology allowing this enhancement is the enforcement
of the tangent space in our SSM reconstruction, based on the theoretically known first three eigenfrequencies.
Figure 1b shows good agreement between the experimental surface profile elevation at the tank wall and the
delay-embedded SSM-reduced prediction. Furthermore, our 6D reduced model accurately predicts the full
surface profile decay in Figure 1c. Finally, our theory on delay-embedded modal analysis provides insight into
optimal parameter choice applicable to any model reduction method.
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