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Abstract. We show that in a delay-embedded space, the linearized dynamics at a fixed point can be computed solely
from the eigenvalues of the full linearized system independent of its eigenvectors. This observation provides guidelines for
choosing the delay embedding parameters. It also implies that the tangent space of a delay-embedded spectral submanifold
(SSM) is fully determined by the spectrum of the corresponding eigenspace. Thus, we can facilitate the identification of
SSMs from data by prescribing their tangent spaces based on eigenvalue estimates. Applying this procedure to data from
tank sloshing experiments, we identify a 6D SSM and correctly predict the system’s multimodal decay.

Introduction

In data-driven model identification, delay embedding is routinely used. Examples of model reduction methods
based on delay embedding include eDMD [1]], HAVOK [2], and false nearest neighbors [3]]. Another approach
where delay embedding has been employed is data-driven model reduction to SSMs [4, 5]. Takens’ embedding
theorem states that delay-embedding a signal from a generic observable function on the full phase space at
least 2d + 1 times recovers d-dimensional invariant objects. In practice however, their identification crucially
depends on choosing the timelag and embedding dimension properly. Improved understanding of how invariant
objects are reconstructed in observable spaces can thus aid model order reduction methods significantly.

Results and discussion

We show that on a delay-embedded SSM, the linear part of the dynamics is fully determined by the eigenvalues
of its spectral subspace. Therefore, when the eigenvalues of interest are known, we can facilitate computation
of a delay-embedded SSM by prescribing the tangent space, even if the observable function and the SSM in the
full phase space are unknown. We apply this method to data from sloshing experiments, where a tank partially
filled with water is mounted on a moving platform horizontally excited by a motor, and the surface profile of
the fluid is recorded (Figure [Ta)) [4]. As the forcing amplitude increases, more sloshing modes are activated.
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Figure 1: (a) Experimental setup for tank sloshing. (b) Measurement and 6D SSM prediction of the leftmost
point on the surface profile. (c) SSM prediction of full surface profile.

While previous work successfully captured the dynamics of the first mode with a 2D SSM [4] 13]], here, we
model the mutlimodal decay on a 6D SSM. The key technology allowing this enhancement is the enforcement
of the tangent space in our SSM reconstruction, based on the theoretically known first three eigenfrequencies.
Figure [Tb| shows good agreement between the experimental surface profile elevation at the tank wall and the
delay-embedded SSM-reduced prediction. Furthermore, our 6D reduced model accurately predicts the full
surface profile decay in Figure|lc| Finally, our theory on delay-embedded modal analysis provides insight into
optimal parameter choice applicable to any model reduction method.
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