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Abstract. Forced response curves (FRCs) have been widely used to characterize the nonlinear dynamics of mechanical
systems subject to periodic excitations. Forced response surfaces (FRSs), which depict the nonlinear forced response
over a range of excitation amplitudes, however, have been rarely computed in the literature. FRSs remove the need for
a case-by-case computation of FRCs over a sample of excitation amplitudes and automatically uncover any isolas in the
forced response, that are otherwise hard to predict. Here, we construct spectral submanifold-based reduced-order models
(ROMs) of high-dimensional mechanical systems and equip these ROMs with multidimensional manifold continuation of
fixed points to efficiently extract FRSs. By solving optimization problems on these ROMs, we also show how to extract
the ridges and valleys in an FRS, which delineate the main physical features of the forced response. We demonstrate fast
and effective FRS computation using the proposed approach over finite-element models of structural systems.

Introduction

We consider a periodically forced nonlinear mechanical system with forcing frequency Ω and forcing amplitude
ϵ. Let A be the amplitude of the periodic orbit. The frequency response surface (FRS) is a two-dimensional
manifold in the space (Ω, ϵ,A) that is foliated by the FRCs. Ridges and valleys in the surface present the
skeleton of the response surface. In addition, the projection of them onto the plane (Ω,A) gives the damped
backbone curve. The ridges and valleys are obtained as a collection of local extrema of the one-parameter
family of FRCs under variation in ϵ. Since covering a two-dimensional manifold is much more demanding
than that of a one-dimensional manifold, one can use ridges and valleys to characterize the main features of the
FRS without computing it. However, locating these ridges and valleys are still computationally challenging for
high-dimensional problems.

Figure 1: Left: Ridges and valleys obtained from SSM-based ROM(lines) and the full system via collocation (markers). Right: FRS
and its the ridges and valleys obtained via the SSM-based ROM along with sampled FRCs obtained from the full system via collocation.

Results and discussion

We remove this bottleneck using reduced-order models (ROMs) on spectral submanifolds (SSMs) [1]. Specif-
ically, we reformulate the periodic orbits of the full system as fixed points of their low-dimensional ROMs
on SSMs computed via SSMTool [2]. We then use multidimensional manifold continuation [3] of these fixed
points to compute the FRS of the full system. Furthermore, we use a successive continuation [4] to locate the
ridges and valleys directly with the computation of only one forced response curve.
We apply the proposed method to a cantilever beam with a nonlinear support. This system is discretized with 50
DOFs. As seen in Fig. 1, the results from SSM predictions match well with that of collocation methods. Here,
the complete FRS is obtained in less than half an hour via the SSM reduction, while the 6 sampled FRCs are
obtained in nearly 6 hours using a collocation method on the full system. Furthermore, generating the ridges
and valleys via the SSM reduction took 31 seconds whereas that using a collocation scheme on the full system
took 1.5 days. Note that the isolas are uncovered automatically via this FRS computation, as shown in Fig. 1.
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