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Abstract. We study the slow average motions of a particle on a horizontally vibrating frictional table. The equations
of motion have non-analytic nonlinearities. Numerical simulations show multiple time scales. The system is analyzed
using the method of multiple scales (MMS). The slow-flow integrals are found using asymptotics, have logarithmic
nonlinearities, are valid near the target location on the table, are easy to integrate numerically, and retain parametric
excitation in slow time. The slow flow matches well with full numerical solutions. This is the first MMS analysis of a
problem in this area that we are aware of.

Introduction

A point mass m under gravity g moves on a table with a coefficient of friction µ. The table kinematics is
described by its instantaneous centre of rotation (xc(t) = R cos(Ωt), yc(t) = R sin(Ωt)) and its angular
velocity ν = H cos(ωt). This prescribed motion, for some parameter choices, generates a stable fixed point in
space. This problem is of interest in robotics [1, 2] and is relevant to open-loop manipulation of part feeders in
industry. We scale length and time by selecting R = 1 and ω = 1. Further, letting H = εA, Ω = 1/2 + ε∆,
and µg = ε2α, the equations of motion are:
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ẏ − εA cos(t)

[
x− cos

(
t
2 + ε∆t

)]}√{
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Results and discussion

The method of multiple scales (MMS) works here. The corresponding slow flow equations can be obtained via
asymptotic approximations for some integrals. These equations are
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In Eqs. 3-4, the superscript ′ denotes a derivative with respect to T1. Further,C = cos (2∆T1), S = sin (2∆T1),
E =
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S+2ζ ′η′C+η′2+ζ ′2, andG = 10 ln (2)+4 ln (A)+4.

In Fig. 1(a), full solutions for Eqs. 1-2 in the x− y plane and for Eqs. 3-4 in the ζ − η plane are superimposed.
The match is excellent. In Fig. 1(b), a comparison between y and η is shown. A zoomed-in portion of the
same is shown in Fig. 1(c). The similar match for x and ζ is omitted to save space. We emphasize that fast
oscillations of x and y are absent from ζ and η, though slow oscillations are retained. Those can be removed
with unconventional calculations that we will present in another paper.
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Figure 1: Comparison between solutions of Eqs. 1-2 and Eqs. 3-4: (a) x-y plane, (b) time response for 0 ≤ εt ≤ 1000, and (c)
time response for 850 ≤ εt ≤ 856. These results were obtained with parameters α = 0.5, ε = 0.01, A = 1, ∆ = 1.1 and for
near-zero-velocity initial conditions.
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