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Abstract. This contribution presents two different data-science approaches for identifying non-linear ordinary dif-
ferential equations from transient system state data. The theory, benefits and pitfalls of a differential approach (called
SINDy) and a variational approach are discussed. These are used to identify the DUFFING oscillator equation purely from
simulation data.

Introduction

Describing the behavior of dynamical systems with ordinary differential equations dx
dt = f(x, t) is at the core of

many disciplines in science. The “classical” approach uses first principles (e.g., momentum balance) to derive
a set of governing equations. Data-driven approaches are another way to describe system dynamics: here, a
description is achieved purely based on system state data. One possibility is to use neural networks that are
trained to replicate the system behavior. If a suitable architecture and hyper-parameters are found, the behavior
can be predicted relatively fast. Another way is to identify the (non-linear) model equations directly from the
data. This has the advantage that the model equations possibly allow for physical insight into the system and
that – in general – less data is needed than for training a neural network. However, some basic understanding
of the dynamics present in the system is required. Therefore, this approach tries to combine the two mentioned
above. We explore this approach by using two different classes of methods: a differential approach called
SINDy (Sparse Identification of Non-linear Dynamics) [1] and a variational approach [2]. Both methods are
based on system state data obtained either through experiment or simulation (as done for this contribution). The
SINDy approach is described by
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The matrix X contains the gathered data for each DoF (as column entries). The derivation w.r.t. time Ẋ is
carried out numerically. Then a set of k different possible candidate function terms Φk (e.g., monomials,
trigonometric functions, ...) is evaluated subject to X . These function terms are weighted with k factors ξ and
their sum is required to equal the differentiated data. This represents an over-determined equation system for
a first order differential equation. Instead of using a classical least square approach, sparsity of the factors ξ is
additionally promoted, since governing equations are mostly sparse in their functional terms. This is achieved
by minimizing the Euclidean norm of the residuum and the summation norm of the factor vector ξ. The
variational approach uses a variational-integral formulation∫ T2

T1

(
δU0(x, ẋ) +
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As for SINDy, U0 and Uk are expressed by k possible candidate function terms Φ, which are evaluated with the
gathered data X for arbitrary T1, T2 and δx . After (numerical) integration, the coefficients ξ can be calculated.

Results and discussion

We focus on the comparison between the differential and variational methods based on the application to the
Duffing oscillator ẍ+2Dẋ+x+κx3 = f cos(Ωt) with an overhanging resonance peak. This is an interesting
example since three solutions co-exist. Therefore, we extend the results from [3] and [4] w.r.t. a higher degree
of non-linearity. We show that the choice of data is essential for (re-)discovering the governing differential
equation: transient data gathered away from attractors led here to better results. Additionally, numerical dif-
ferentiation as a source of noise has a significant impact. Here, variational methods are less prone to noise,
whereby differential methods tend to be more efficient (see also [2]). Finally, we study the influence of numer-
ical parameters and the choice of candidate function terms.
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