## **Dynamics of Delayed Piecewise Linear Mathieu Equation**

Adireddi Balaji\*, Aswanth Thani\*, C. P. Vyasarayani\* and K. R. Jayaprakash \*\*

\*Mechanical and Aerospace Engineering, Indian Institute of Technology Hyderabad, Sangareddy, 502285, India. \*\*Mechanical Engineering, Indian Institute of Technology Gandhinagar, 382355, India

**Abstract**. We study the dynamics of a piecewise linear (PWL) oscillator subjected to parametric excitation, time delayed feedback and cubic nonlinear interaction force. The governing equation is non-smooth, essentially nonlinear and infinitedimensional. In the absence of cubic nonlinearity, the solutions are scalable, i.e., if  $\phi(t)$  is a solution, then  $\alpha\phi(t)$  ( $\alpha \neq 0$ ) is also a solution. We render the dynamical system finite dimensional by using Galerkin approximation and evaluate the Lyapunov-like exponent to explore the regions of stability. The method of averaging (MAV) is invoked to derive slow-flow equations to explore the stability of periodic solutions and bifurcations thereof.

## Introduction

PWL oscillators are isochronous in spite of their essential nonlinearity. A cracked beam [1] exhibits PWL behaviour wherein the effective stiffness is higher during crack closure phase in comparison to that of crack opening. Systems which have intermittent contact and/or backlash [2] are effectively modeled as PWL systems. As such, analytical study of their dynamical behavior is of interest and importance. To this end, we consider a PWL Mathieu equation [2] [3] with cubic nonlinearity and time delay in the following non-dimensional form

$$\ddot{u} + \left\{\kappa(u) + \varepsilon P \sin(\Omega t)\right\} u + \varepsilon C u^3 = \varepsilon D u (t-1).$$
<sup>(1)</sup>

Where time delay has been rescaled to unity, P, C, and D scaled by  $\varepsilon(0 \le \varepsilon << 1)$  are the amplitude of the parametric excitation, strength of cubic nonlinearity, and delayed feedback respectively,  $\Omega$  is the frequency of the parametric excitation,  $\kappa(u) = k_1^2$  for u > 0 and  $\kappa(u) = k_2^2$  for  $u \le 0$ . The time period and natural frequency of the unperturbed autonomous oscillator ( $\varepsilon = 0$ ) is  $T = \pi(1/k_1 + 1/k_2), \omega_{pwl} = 2\pi/T$  respectively. The excitation frequency is considered close to a resonance manifold such that  $\Omega = m\omega_{pwl} + \varepsilon\sigma$ , where  $m \in \mathbb{Z}^+$  and  $\sigma = O(1)$  is the frequency detuning parameter.

## **Results and discussion**

We begin with the linear system (C = 0) and use Galerkin approximation to render the infinite-dimensional dynamical system a finite-dimensional one. Owing to the scalability of the system, we evaluate the Lyapunov-like exponents [3] to explore the stable and unstable regions in the  $\sigma - P$  plane (Fig. 1(a)). MAV is invoked by considering PWL basis functions [4] for the unperturbed autonomous system and derive the slow-flow equations. The fixed points of the slow-flow equations correspond to the steady state solutions of Eq. (1) and forms the boundary in Fig. 1(a) (green curve). In case of a nonlinear system ( $C \neq 0$ ), there are multiple steady state solutions and the bifurcation plot is shown in Fig. 1(b). The steady state solutions undergo saddle-node bifurcation at  $\sigma = \sigma_1$ , supercritical pitchfork bifurcation at  $\sigma = \sigma_2$ , subcritical pitchfork bifurcation at  $\sigma = \sigma_3$  and saddle-node bifurcation at  $\sigma = \sigma_4$ . From the MAV, we observe that there exists no trivial steady-state solutions before  $\sigma = \sigma_1$  and after  $\sigma = \sigma_4$  in Fig. 1(b). Fig. 1(c) shows the three-dimensional bifurcation plot in  $\sigma - k_2 - A_a^*$  space. By decreasing the value  $k_2$  to 1.5174, we eliminate subcritical pitchfork bifurcation. Below  $k_2 = 1.5174$ , we have only two saddle-node bifurcation of the trivial solution  $A_a^* = 0$ .



Figure 1: (a) Stability chart, orange: stable, blue: unstable and green: steady state solution of slow-flow equation (C = 0). (b) Bifurcation diagram for  $k_2 = 3$ . (c) Bifurcation diagram in  $\sigma - k_2 - A_a^*$  space, (dotted lines: unstable, and solid lines: stable solutions) corresponding to  $k_1 = 1$ ,  $\varepsilon = 0.1$ , P = 4, C = D = 1, m = 1.

## References

- [1] Chati M., Rand R., Mukherjee S. (1997) Modal analysis of a cracked beam. Jl. of Sound and Vibration 207(2):249-270.
- [2] Theodossiades S., Natsiavas S. (2000) Nonlinear dynamics of gear pair systems with periodic stiffness and backlash. Jl. of Sound and Vibration 229(2):287-310.
- [3] Marathe A., Chatterjee A. (2006) Asymmetric Mathieu equations. Proc. of the Royal Soc. A 462(2070):1643-1659.
- [4] Jayaprakash K. R., Tandel V., Starosvetsky Y. (2022) Dynamics of excited piecewise linear oscillators. Nonlin. Dyn. (in revision).