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Abstract. We study the dynamics of a piecewise linear (PWL) oscillator subjected to parametric excitation, time delayed
feedback and cubic nonlinear interaction force. The governing equation is non-smooth, essentially nonlinear and infinite-
dimensional. In the absence of cubic nonlinearity, the solutions are scalable, i.e., if ϕ(t) is a solution, then αϕ(t) (α ̸= 0)
is also a solution. We render the dynamical system finite dimensional by using Galerkin approximation and evaluate the
Lyapunov-like exponent to explore the regions of stability. The method of averaging (MAV) is invoked to derive slow-flow
equations to explore the stability of periodic solutions and bifurcations thereof.

Introduction

PWL oscillators are isochronous in spite of their essential nonlinearity. A cracked beam [1] exhibits PWL
behaviour wherein the effective stiffness is higher during crack closure phase in comparison to that of crack
opening. Systems which have intermittent contact and/or backlash [2] are effectively modeled as PWL systems.
As such, analytical study of their dynamical behavior is of interest and importance. To this end, we consider a
PWL Mathieu equation [2] [3] with cubic nonlinearity and time delay in the following non-dimensional form

ü+
{
κ(u) + ε P sin(Ωt)

}
u+ εC u3 = εD u (t− 1) . (1)

Where time delay has been rescaled to unity, P,C, and D scaled by ε(0 ≤ ε << 1) are the amplitude of
the parametric excitation, strength of cubic nonlinearity, and delayed feedback respectively, Ω is the frequency
of the parametric excitation, κ(u) = k21 foru > 0 and κ(u) = k22 foru ≤ 0. The time period and natural
frequency of the unperturbed autonomous oscillator (ε = 0) is T = π(1/k1+1/k2), ωpwl = 2π/T respectively.
The excitation frequency is considered close to a resonance manifold such that Ω = mωpwl+εσ, where m ∈ Z+

and σ = O(1) is the frequency detuning parameter.

Results and discussion

We begin with the linear system (C = 0) and use Galerkin approximation to render the infinite-dimensional
dynamical system a finite-dimensional one. Owing to the scalability of the system, we evaluate the Lyapunov-
like exponents [3] to explore the stable and unstable regions in the σ − P plane (Fig. 1(a)). MAV is invoked
by considering PWL basis functions [4] for the unperturbed autonomous system and derive the slow-flow
equations. The fixed points of the slow-flow equations correspond to the steady state solutions of Eq. (1) and
forms the boundary in Fig. 1(a) (green curve). In case of a nonlinear system (C ̸= 0), there are multiple steady
state solutions and the bifurcation plot is shown in Fig. 1(b). The steady state solutions undergo saddle-node
bifurcation at σ = σ1, supercritical pitchfork bifurcation at σ = σ2, subcritical pitchfork bifurcation at σ = σ3
and saddle-node bifurcation at σ = σ4. From the MAV, we observe that there exists no trivial steady-state
solutions before σ = σ1 and after σ = σ4 in Fig. 1(b). Fig. 1(c) shows the three-dimensional bifurcation plot
in σ − k2 − A∗

a space. By decreasing the value k2 to 1.5174, we eliminate subcritical pitchfork bifurcation.
Below k2 = 1.5174, we have only two saddle-node bifurcation of the trivial solution A∗

a = 0.

Figure 1: (a) Stability chart, orange: stable, blue: unstable and green: steady state solution of slow-flow equation (C = 0). (b)
Bifurcation diagram for k2 = 3. (c) Bifurcation diagram in σ−k2−A∗

a space, (dotted lines: unstable, and solid lines: stable solutions)
corresponding to k1 = 1, ε = 0.1, P = 4, C = D = 1, m = 1.
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