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Abstract. In this work, we analytically examine the validity of using a standard nonlinear beam model of an electrostatic
micro-cantilever beam compared to a geometrically exact theory that incorporates shear deformability, nonlinear bending
curvature, inertia and longitudinal inextensibility. The results show that the geometrically exact model is more suitable to
accurately capture the nonlinear behavior of electrostatic MEMS designs.

Introduction and Problem Formulation

The nonlinear characteristics of electrostatically excited micro-cantilever beams play an important role in de-
termining their performance and suitability to design and manufacture useful devices. Here we provide an-
alytical evidence of the importance of a geometrically exact approach when modeling electrostatic cantilever
microbeams. The governing equation of motion of the microbeam is a consistent expansion of the geometrically
exact equation of motion obtained in [1] and reads:

(1− 1

2
v̂′2)¨̂v + v̂′

∫ ŝ
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where v denotes the transverse motion, the prime and over-dot indicate differentiation with respect to the arc-
length and time, respectively, and fes indicates the electrostatic force per unit length.

Results and Discussions

Variation of the tip-section static equilibria with the DC voltage was obtained by eliminating the time derivatives
in the equation of motion and employing a ROM with one-, two-, and three-mode projection in the Galerkin
expansion. We note that an odd number of mode shapes leads to faster and closer convergence than using an
even number, see Fig. 1(a). Henceforth, we adopt the odd-mode ROM approximation in the rest of the static
analysis. Then, we compare the results to those obtained using a standard nonlinear beam model [2] with
three-modes projection and 2D-FEM models as shown in Fig. 1(b). A good agreement is observed between the
proposed model and FEM results, however, the pull-in voltage is slightly higher than FEM model. This, in fact,
is expected since the model is stiffer and requires more voltage to pull it down.
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Figure 1: The tip deflection vs. DC voltage obtained considering: (a) 1-, 2- and 3-mode projection and (b) comparison of the standard
and geometrically exact models. (c) Dynamic convergence analysis using the proposed model with 1-, 2- and 3-mode projections in
the vicinity of the first natural frequency. (d) FRCs around the second natural frequency.
We carried out a dynamic convergence analysis to determine the minimum number of modes required in the
expansion. To this end, we obtained the frequency response curves in the vicinity of the first natural frequency
with varying actuation waveforms. Figure 1(c) shows that three modes are also required for convergent and
robust results. This finding is consistent with that obtained for the static results. We also obtained the frequency-
response curves in the vicinity of the second natural frequency under four excitation levels. We note that the
response is slightly softening for the second mode. The fully nonlinear model accounts correctly for the inertia
and bending curvature nonlinearities as well as the electrostatic nonlinearity.
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