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Abstract. In numerical formulations of three-dimensional beams the choice of primary interpolated variables is highly
important for the efficiency and accuracy of the method. The crucial idea exploited in our approach is to employ velocity
and angular velocity vectors in their suitable component descriptions to set the discrete computational model.

Introduction

Many computational challenges in dynamic modelling of frame-like structures are directly related to the prop-
erties of configuration space of three-dimensional beams which typically incorporates three-dimensional rota-
tions. Since rotations form a non-commutative multiplicative group their computational treatment requires a
special care. In contrast, the measures for their rate of change – the angular velocities are additive quantities
when expressed with respect to the moving basis. The crucial idea is thus to employ velocities in fixed frame
description and angular velocities in moving frame description as the primary unknowns of numerical model.

Kinematic compatibility

Another important property of continuous system, exploited in our work, is the direct relation between the
strains and the velocities, called the compatibility equations [1]. In Cosserat rod theory the resultant strain
measures at the centroid of each cross-section are directly introduced and expressed with kinematic variables
by the first order differential equations

Γ = q̂∗ ◦ r′ ◦ q̂+ Γ0, K = 2q̂∗ ◦ q̂′, (1)

where Γ and K denote the translational and rotational strain, respectively, both expressed with respect to the
local basis, while position vector r and rotational quaternion q̂ are expressed in the fixed basis. It is important to
observe that strains, velocities, and angular velocities are mutually dependent. Their direct relation is obtained
by comparing mixed partial derivatives, which gives

Γ̇ = q̂∗ ◦ v′ ◦ q̂+ (Γ− Γ0)×Ω,
·
K = Ω′ +K×Ω (2)

with v denoting velocity and Ω the angular velocity. In our approach we satisfy the kinematic compatibility
equations (2) with the same accuracy as the governing equations. The discrete kinematic compatibility equa-
tions can be completely harmonized with the energy conservation demands, which results in robustness and
long-term stability of the overall algorithm.
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Figure 1: Free flight of a flexible beam: problem description (left) and total mechanical energy (right).

Figure 1 shows the performance of the present approach for the benchmark problem of flying flexible beam
presented by Simo and Vu-Quoc [2] and characterized by very large displacements and rotations. The long-
term stability and the energy preservation using our model can be observed.
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