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Abstract. This work presents a shooting algorithm to compute the periodic responses of geometrically nonlinear structures 

modelled using an SE(3) Lie group beam formulation. The formulation is combined with a pseudo-arclength continuation 

method and used to compute the nonlinear normal modes (NNMs) of a doubly clamped beam. The efficiency of beam model 

is an advantage that can offset the computational cost of numerical continuation methods. Results are compared with a 

reference displacement-based FE model with von Kármán strains. 
 

Introduction 
New designs of mechanical structures are increasingly lighter and more flexible and exhibit geometric 

nonlinearities due to the presence of large displacements and rotations. A popular approach for modelling 

geometric nonlinearities is to use von Kármán finite element (FE) models, which assume Euler-Bernoulli 

bending and approximate the Green-Lagrange strain measures by including only the quadratic terms pertaining 

to the rotations. These methods are widely used for modelling both beams and plates and for creating reduced 

order models of such structures. However, due to its simplified and approximate treatment of strains and its 

linearised kinematics, von Kármán equations are not suitable for modelling large deformations. Geometrically 

exact beam theories can alternatively be used for such cases, however, the parametrisation of rotations can 

lead to FE discretisations which do not preserve strain invariance under rigid body motion [1]. Other beam 

models such as the intrinsic beam formulation deals with this issue by eliminating rotations and displacements 

from the equations of motion, however, they face additional difficulties in FE assembly and in imposing 

boundary conditions. 

Beam formulations based on the Special Euclidean Lie Group SE(3) circumvent these problems by coupling 

the rotations and positions and adopting a local frame approach. The invariance of the strains under rigid body 

motion comes naturally from this formulation. Moreover, shear locking is avoided thanks to a nonlinear 

interpolation formula based on the exponential map that couples the rotation and positions fields and governs 

the nonlinear configuration space [2]. In this work, the Lie group formulation is used to find unforced NNMs 

of geometrically nonlinear structures, where results are compared to that from a von Kármán beam model. 
 

Results and Discussion 

Results are shown for a straight clamped-clamped beam discretised with 30 elements were NNMs are 

calculated using the Lie group and von Kármán solvers. The frequency energy plot corresponding to the second 

NNM is seen in Figure 1. Two resonance tongues appear in the solution curve: the first starting approximately 

at 160 Hz and corresponding to a 3:1 interaction with mode 4, and the second starting approximately at 207 

Hz and corresponding to a 5:1 interaction with mode 6. An additional interaction is captured by the Lie group 

solver along the first tongue corresponding to an internal resonance between modes 2 and 6, which is not found 

using the von Kármán solver. The effect of the discretisation on the accuracy of the results is shown in Figure 

2, where the Lie group solver can capture the nonlinear dynamics with fewer beam elements, which is an added 

advantage over the von Kármán solver. Additional structures analysed are a cantilever and an L-shaped beam, 

where displacements and rotations are larger and the increased accuracy of the Lie group solver in capturing 

nonlinearities overcomes the limitations of the von Kármán model. 

 
Figure 1: FEP of 2nd NNM of clamped-clamped beam 

 
Figure 2: Effect of mesh size on NNM2 
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