Global Parametric Optimization for Structures with Nonlinear Joints in Vibration
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Abstract. The optimal design of complex structures with nonlinear vibration is a significant concern for the indus-
try. This work presents a numerical strategy relying on Bayesian Optimization for the parametric optimization of such
structures with the aim of lowering the computational cost compared to classical global optimization algorithm. A spe-
cific focus is given on the mechanical solver for the resolution of the nonlinear dynamical problem using the Harmonic
Balance Method combined with an Alternating Frequency/Time approach and a scheme for the numerical continuation
of the solution path. This mechanical solver is then employed to build and enrich a Gaussian Process within a Bayesian
Optimization procedure. The whole strategy is applied to the parametric optimization of a gantry crane.

Introduction

In the process of industrial structure design, numerical simulation combined with parametric optimization al-
gorithms can provide the solution leading to the best performance. Complex assembled structures often include
nonlinear phenomena at their joints (contact, friction, etc...) that this study aims at considering to get a more
precise model and thus, a more optimal solution while performing a parametric optimization. However, the
dynamical simulation of nonlinear models is computationally expensive, and the fullfilment of global optimiza-
tion, which can require a very large number of computations, on such model could be impraticable in terms of
computational time. Therefore, a specific strategy is proposed to make the parametric optimization of structures
with nonlinear joints in vibration computationally reasonable. Taking advantage of the fact that only degrees
of freedom at the interfaces are nonlinear, the first step consists in performing a Craig Bampton reduction [1].
Then, the solution based on the resulting reduced model is computed using the Harmonic Balance Method
with an Alternating Frequency/Time approach [2]. It allows to find periodic solutions with reasonable accuracy
avoiding the costly computation of possibly long transients. Numerical path continuation is also applied using
a predictor-corrector method to follow the evolution of the solution with respect to the frequency and overcome
potential turning points. The computational cost is still quite expensive, and the direct use of classical global
optimization algorithm combined with this solver is not practicable especially since the problem includes nu-
merous interfaces degrees of freedom. Therefore, a Bayesian Optimization [3] based on Gaussian Process [4]
and an acquisition function is executed to achieve the global parametric optimization with a limited number of
calls to the mechanical solver.
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Figure 1: Parametric optimization of a gantry crane

Results and discussion

The strategy is applied to the parametric optimization of a gantry crane with localized contact. The mechanical
solver proves to be reasonably efficient and able to handle the contact nonlinearity and especially to follow the
turning points thanks to numerical continuation. The Bayesian Optimization allows to significantly reduce the
number of simulations to perform compared to classical global optimization methods such as genetic algorithm.
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