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Abstract. This short paper presents the novel method of designing the closed-loop controller for a nonlinear, discontinuous 

capsule system. As a foundation of the controller, an optimized open-loop control function is used, based on which the neural 

network determines the dependencies between the output and the system’s state. The robustness of a neural controller is 

verified in the uncertain frictional environment and compared with the original control function. It is expected that the method 

can facilitate the design of the systems’ closed-loop controllers, especially for non-smooth and discontinuous ones, where 

typical approaches are not efficient enough. 
 

Introduction 
 

The pendulum capsule drive (Fig. 1a) is an example of a nonlinear, discontinuous system, exhibiting rich and 

interesting dynamical behaviour. It is not only caused by the pendulum's inherent nonlinearity, but also due to 

the frictional interactions between the capsule and the underlying surface, resulting in stick-slip discontinuity. 

Last but not least, the dependence of the contact force on oscillations of the pendulum can be noticed [1]. 

Control design methods applicable to capsubots systems with discontinuities such as the pendulum capsule 

drive considered in this paper, use various approaches, such as the open-loop [2, 3], closed-loop [3], as well as 

neural networks (NN) [4] and others. However, very little research is dedicated to the NN applications in 

optimal control drives. One possibility is the use of Reinforcement Learning. Nevertheless, it requires a lot of 

time and resources [5]. In this case, the authors propose a simpler approach. The open-loop optimal control 

approximation of a pendulum capsule drive, obtained within the method described in [2], is the base for the 

NN model created with a specified structure that can determine the dependencies between the open-loop output 

values and the corresponding states of the capsule system. In such a manner, a closed-loop controller is 

obtained. The purpose of this study is to test and evaluate the robustness and efficiency of the NN closed-loop 

controller comparing with the original open-loop one, in an uncertain frictional environment. 
 

 
 

Figure 1: Scheme of the pendulum capsule drive (a) [2] and the robustness comparison of the open-loop and neural controllers (b) 
 

Results and discussion 
 

The controllers’ robustness studies revealed a 1.16% higher performance and 7% better resistance of the NN 

closed-loop controller comparing to the original open-loop, in the constant frictional environment and the 

uncertain one, respectively (Fig. 1b). Obtained results confirm that the NN controller works more efficiently, 

offering better robustness against uncertainties appearing in the environment with the varying coefficient of 

friction, which is one of the main limitations in the open-loop controllers. Moreover, the novel NN closed-

loop controller seems to be an interesting option for designing and optimization of the systems controllers, 

particularly for discontinuous ones, where the open-loop approach is only available. 
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