Resonant phase lags of an oscillator with polynomial stiffness
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Abstract. Nonlinear systems can exhibit complex behaviours, such as secondary resonances, which are sometimes
overlooked in the industry. This work aims at giving a first analytical insight on the behaviour of those secondary res-
onances and especially their resonant phase lags, nonnecessarily equal to /2, using a first-order averaging technique.
These phase lags can be later used for experimental nonlinear modal analysis techniques such as phase-locked loop.

Introduction

First- and higher-order avaraging technique is commonly used to describe analytically the behaviour of weakly
nonlinear systems [1, 2]. However, the analysis is generaly made for Duffing and Helmholtz oscillators, re-
spectively. The present work extends the existing studies to an oscillator with arbitrary polynomial stiffness:

B(t) + 2Cwoi(t) + wix(t) + Z gzl (t) = ysinwt (1)
d=2

Results and discussion

First, for the primary resonance, assuming small damping ¢, nonlinear coefficients o4 and forcing -, and writing
the solution as x(t) = Asin (wt — ¢). The governing equations show that nonlinearities with even powers do
not participate to the motion, and that the phase lag ¢, at amplitude resonance is, at first-order: tan ¢, = C%o’
where w, is the amplitude resonance frequency. ¢, is close to 5 since the damping is small. ¢, = 7 is thus
defined as the phase lag at phase resonance.

Second, secondary resonances can be studied by assuming small damping and nonlinear coefficients, but strong
forcing. The solution can then be expressed as x(t) = I'sinwt + Ay sin (kwt — ¢y,) for k : 1 superharmonic
resonances and z(t) = I'sinwt+ A, sin (2t — ¢, ) for 1 : v subharmonic resonances. The governing equations
show that nonlinearities with odd (even) powers only generate odd (even) secondary resonances, i.e., when k
and v are odd (even), and for which amplitude resonance occurs close to ¢, = 5 ( ¢, = 0), defined as the
phase lag at phase resonance for odd (even) secondary resonances.

Higher-order averaging can be used to show that nonlinearities with odd (even) powers do generate even (odd)
secondary resonances. For example, even secondary resonances can be found for a Duffing oscillator and the
associated phase lag at phase resonance is % [3].

These results are illustrated on a 3 : 1 superharmonic (Fig. la) and a 1 : 3 subharmonic (Fig. 1b) where
amplitude and phase resonances are shown for an oscillator whose nonlinear term is a7z” (t). Both amplitude
and phase resonances occur almost simultaneously for each type of secondary resonance.
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Figure 1: Evolution of the amplitudes Az and A; around the 3:1 and 1:3 superharmonic and subharmonic resonances (black), phase
(red) and amplitudes (blue) resonances
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