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Abstract. We present a differential formulation of a novel uniaxial rate-independent hysteretic model, denominated
Vaiana-Rosati Model, that is capable of simulating complex generalized force-displacement hysteresis loops, ranging
from the asymmetric, pinched, S-shaped, flag-shaped ones to those obtained by their arbitrary combination. Such a for-
mulation drastically simplify the model implementation when the nonlinear equilibrium equations of a generic hysteretic
mechanical system are expressed in the state-space form.

Introduction

In the field of nonlinear dynamics, the second-order nonlinear Ordinary Differential Equations (ODEs), gov-
erning the complex response of hysteretic mechanical systems, are typically reformulated as a set of first-order
nonlinear ODEs by introducing the state-space variables [1]. Consequently, hysteretic models are classically
expressed in such a way that the output variable is evaluated by solving a differential equation that can be
directly added to the set of first-order nonlinear ODEs to be numerically solved.
Conversely, more recent hysteretic models, such as the Vaiana-Rosati Model (VRM)[2], allow for the evaluation
of the output variable by means of closed-form expressions having algebraic or transcendental nature.

Vaiana-Rosati Model

The VRM offers a series of advantages over other hysteretic models available in the literature. Indeed, it: i)
allows for the evaluation of the generalized force in closed form thus requiring a reduced computational effort,
ii) is capable of reproducing different types of complex hysteresis loops, as illustrated in Figure 1, iii) is based
on two set of eight parameters that allow one to manage, respectively, the loading and unloading phases, iv)
adopts parameters describing specific theoretical and/or experimental properties of the hysteresis loops thus
simplifying the identification procedure, and v) can be easily implemented in a computer program.
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Figure 1: Some types of hysteresis loops simulated by the VRM.

VRM Differential Formulation

In order to foster the use of the VRM in nonlinear dynamics, we present the related differential formulation
for which the generalized force f , representing the model output variable, can be evaluated by solving the
following first-order ODE:

ḟ(u, u̇) = [af(u) + b(u)] u̇, (1)

where the overdot denotes differentiation with respect to time t, u (u̇) represents the generalized displacement
(velocity), a is constant function, whereas b(u) is a nonlinear function of u.
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