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Abstract. We use a nonlinear, reduced-order, coupled thermo-elastic model, derived from von Kármán plate equations to 

study the resonant response of simply supported thin rectangular plates under free and forced vibrations and understand the 

experimentally observed behaviour, specifically the change in temperature.  The model is studied using Galerkin 

approximation, harmonic balance and numerical continuation techniques.  Multimode response for plates is considered for 

non-resonant excitation as well as near 1:1 resonance between the second and third eigenmodes of the system, with harmonic 

forcing close to a natural frequency.  Internal resonance and associated coupled-mode dynamics is observed, with noticeable 

decrease in modal amplitudes and some increase in plate natural frequencies due to thermo-elastic coupling.   

Introduction 
 

Experimental study of nonlinear vibration of 3D printed rectangular plates [1], fabricated using nonlinear 

materials, show significant increase in temperature due to continuous motion, suggesting strong coupling 

between mechanical motion and thermal response of the system.  A thermo-mechanical constitutive model for 

thin plates, based on the Berger’s approximation of von Kármán plate theory and energy equations [2], is used 

to study the vibration response of these under free and forced vibration conditions.  A reduced set of coupled 

nonlinear ODE’s for the evolution of transverse displacement 𝑤(𝑥, 𝑦, 𝑡) as well as temperature variables, the 

in plane stress (𝑁𝑇(𝑥, 𝑦, 𝑡)) and bending moment (𝑀𝑇(𝑥, 𝑦, 𝑡)), is obtained by the Galerkin projection of coupled 

thermal-structural PDEs onto the free vibration modes of the S-S-S-S plate [3].  One-mode and two-mode 

spatial approximations are considered.  For example, for the one-mode approximation, letting 𝑤 =
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coupled nonlinear ODEs: 
𝑤1̈(𝑡) + 0.05�̇�1(𝑡) + 𝑤1(𝑡) + 0.334𝑤1

3(𝑡) − 0.067𝑚1(𝑡) − 0.0014 𝑤1(𝑡)𝑛1(𝑡) = 𝐹𝑐𝑜𝑠(Ω𝑡)     (1)                                                                

𝑛1̇(𝑡) + 0.002𝑛1(𝑡) + 7 × 10−4𝑇∞ + 0.0994𝑤1(𝑡)𝑤1̇(𝑡) = 0                        (2)                                                  

𝑚1̇ (𝑡) + 0.337𝑚1(𝑡) + 1.18𝑤1̇(𝑡) = 0                                                                                                           (3)                                         

Nonlinear coupling is seen in the above, only for the 𝑤1 and 𝑛1equations.  These equations are studied using 

direct numerical integration, through the harmonic balance method and by using pseudo arc-length based 

continuation schemes.  They are also compared to finite element based results.   

Results and Discussion 

Single-mode approximation of the system shows significant damping being introduced by the thermo-elastic 

coupling, which affects both the amplitude and frequency of the system.  Multimode response is studied for 

the case of a plate with1:1 relation between the second and third eigenmode frequencies, achieved through a 

precisely chosen aspect ratio of 1.633 for the plate [3]. Internal resonance is observed, resulting in activation 

of both modes while the external force is orthogonal to one of the modes.  The coupling of thermal response 

again results in decrease in the amplitude, while increasing the resonant frequency.  There is a corresponding 

increase in the temperature shown in Figure 1 at the midpoint of the plate. Thermal coupling also leads to an 

increase in the frequency range corresponding to the coupled mode.  

  
 

Figure 1. Multiple solution branches and bifurcations for: a) Mode 2 and b) Mode 3 transverse response for the two-mode model with 

1:1 resonance; c) Temperature variation at the plate midpoint. Thick/thin lines corresponds to stable/unstable solutions respectively. 
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