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Abstract. We demonstrate an efficient scheme to regulate the behaviour of coupled nonlinear oscillators through
dynamic control of their interaction. It is observed that introducing intermittency in the interaction term as a function
of time or the system state, predictably alters the dynamics of the constituent oscillators. Choosing the nature of the
interaction - attractive or repulsive, allows for either suppression of oscillations or stimulation of activity. Two parameters
∆ and τ , that reign the extent of interaction among subsystems are introduced. They serve as a harness to access the entire
range of possible behaviours from fixed points to chaos. For fixed values of system parameters and coupling strength,
changing ∆ and τ offers fine control over the dynamics of coupled subsystems.

Introduction

Dynamics ranging from fixed points to chaos exist in nature [1] and mechanisms to regulate such dynamics are
crucial for practical applications. Coupled nonlinear oscillators serve as a prototype to model many real-world
systems [2] examples include the climate [3], population dynamics in ecosystems and financial markets . Con-
sider N (= 2) identical m-dimensional nonlinear oscillators coupled via dynamic interaction in the following
two ways:

Ẋi = F (Xi) + εγ
N∑
j=1

(HXj −Xi), (1)

where, i, j = 1, 2, and i 6= j. Xi represents state variables of the m-dimensional i-th oscillator and F : Rm →
Rm is the vector field describing its intrinsic dynamics. H(Xi, t) takes the values 0 or 1 either as a function of
time t or the state variables Xi. When H = 1 the two oscillators are coupled to each other and when H = 0
they are completely isolated from each others’ influence. When H depends on the state variables of the two
oscillators, i.e.,

H(Xi, t) =

{
1 ifXi ∈ R′

0 ifXi /∈ R′ (2)

this yields a state dependant interaction. Where R′ is a subset of the state space Rm where the interaction is
active. A measure of this subset is obtained from the normalized fraction ∆ = ∆′/∆a, where ∆a is the width
of the uncoupled attractor along the direction of the coupled state variable and ∆′ is the width of the region
in which the coupling is active. Time dependant interaction is when H is explicitly dependant on time. For
instance H can be a periodic step function of time period T as follows,

H(Xi, t) =

{
1 if 0 < t ≤ τ ′

0 if τ ′ < t ≤ T
(3)

Here, τ = τ ′/T is a measure for the fraction of time the interaction is active. These two parameters ∆ and τ that
control the degree of interaction between the coupled systems, allow us to harness a given coupled oscillator
into desired stable states.
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Figure 1: Suppression through space-dependant interaction(Left) Suppression through time-dependant interaction:(Right): (a) Different
dynamical states of two coupled Chua oscillators in the parameter plane (ε−∆). The regimes marked C, P, FP, and BS represent chaotic,
periodic, fixed point and bistable (co-existence of oscillatory and fixed point state) state respectively. (b) Bifurcation diagram of the
coupled Chua system (c.f. Eqs. 1 ) is plotted with interaction active state space ∆ at ε = 0.41, obtained by sampling the relative
maxima and minima of the time history of x1(t).(c) Experimental phase portraits for ε = 0.41 corresponding to various values of the
control parameter ∆.


