Regulating dynamics through intermittent interactions

Shiva Dixit, Manaoj Aravind and Punit Parmananda

Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.

Abstract. We demonstrate an efficient scheme to regulate the behaviour of coupled nonlinear oscillators through dynamic control of their interaction. It is observed that introducing intermittency in the interaction term as a function of time or the system state, predictably alters the dynamics of the constituent oscillators. Choosing the nature of the interaction - attractive or repulsive, allows for either suppression of oscillations or stimulation of activity. Two parameters Δ and τ , that reign the extent of interaction among subsystems are introduced. They serve as a harness to access the entire range of possible behaviours from fixed points to chaos. For fixed values of system parameters and coupling strength, changing Δ and τ offers fine control over the dynamics of coupled subsystems.

Introduction

Dynamics ranging from fixed points to chaos exist in nature [1] and mechanisms to regulate such dynamics are crucial for practical applications. Coupled nonlinear oscillators serve as a prototype to model many real-world systems [2] examples include the climate [3], population dynamics in ecosystems and financial markets. Consider N(= 2) identical *m*-dimensional nonlinear oscillators coupled via dynamic interaction in the following two ways:

$$\dot{\mathbf{X}}_{i} = F(\mathbf{X}_{i}) + \epsilon \gamma \sum_{j=1}^{N} (H\mathbf{X}_{j} - \mathbf{X}_{i}),$$
(1)

where, i, j = 1, 2, and $i \neq j$. \mathbf{X}_i represents state variables of the *m*-dimensional *i*-th oscillator and $F : \mathbb{R}^m \to \mathbb{R}^m$ is the vector field describing its intrinsic dynamics. $H(\mathbf{X}_i, t)$ takes the values 0 or 1 either as a function of time *t* or the state variables \mathbf{X}_i . When H = 1 the two oscillators are coupled to each other and when H = 0 they are completely isolated from each others' influence. When H depends on the state variables of the two oscillators, i.e.,

$$H(\mathbf{X}_{i}, t) = \begin{cases} 1 & \text{if } \mathbf{X}_{i} \in R' \\ 0 & \text{if } \mathbf{X}_{i} \notin R' \end{cases}$$
(2)

this yields a *state dependant interaction*. Where R' is a subset of the state space \mathbb{R}^m where the interaction is active. A measure of this subset is obtained from the normalized fraction $\Delta = \Delta'/\Delta_a$, where Δ_a is the width of the uncoupled attractor along the direction of the coupled state variable and Δ' is the width of the region in which the coupling is active. *Time dependant interaction* is when *H* is explicitly dependant on time. For instance *H* can be a periodic step function of time period *T* as follows,

$$H(\mathbf{X}_{i}, t) = \begin{cases} 1 & \text{if } 0 < t \le \tau' \\ 0 & \text{if } \tau' < t \le T \end{cases}$$
(3)

Here, $\tau = \tau'/T$ is a measure for the fraction of time the interaction is active. These two parameters Δ and τ that control the degree of interaction between the coupled systems, allow us to harness a given coupled oscillator into desired stable states.

References

[1] M. Lakshmanan and K. Murali, Chaos in nonlinear os- cillators: controlling and synchronization, Vol. 13 (World scientific, 1996).

[2] A. T. Winfree, The geometry of biological time, Vol. 2 (Springer, 1980).

[3] M. Scheffer, Critical transitions in nature and society (Princeton University Press, 2020).

Figure 1: Suppression through space-dependant interaction(Left) Suppression through time-dependant interaction:(Right): (a) Different dynamical states of two coupled Chua oscillators in the parameter plane $(\epsilon - \Delta)$. The regimes marked C, P, FP, and BS represent chaotic, periodic, fixed point and bistable (co-existence of oscillatory and fixed point state) state respectively. (b) Bifurcation diagram of the coupled Chua system (c.f. Eqs. 1) is plotted with interaction active state space Δ at $\epsilon = 0.41$, obtained by sampling the relative maxima and minima of the time history of $x_1(t)$.(c) Experimental phase portraits for $\epsilon = 0.41$ corresponding to various values of the control parameter Δ .