Closed-form solutions and conservation laws for a Korteweg-de Vries-like equation

Chaudry Masood khalique*, and Mduduzi Yolane Thabo Lephoko
*International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, Private Bag X 2046, Mmabatho 2735, Republic of South Africa, ORCID \# 0000-0002-1986-4859

Abstract

In this talk we study a second-order nonlinear Korteweg-de Vries-like (KdV-like) partial differential equation, which has several applications in various scientific fields. Firstly, we compute Lie point symmetries of the KdV-like equation. Thereafter the commutator table for the Lie point symmetries is generated, and we use Lie equations to produce one-parameter groups of transformations. Moreover, group-invariant solutions are obtained under each point symmetry. Furthermore, we use the conservation theorem due to Ibragimov to derive the conservation laws for the KdV-like equation.

Introduction

In [1] the authors introduced the new KdV-like equation

$$
\begin{equation*}
\left(D_{3, x} D_{3, t}+c D_{3, x}^{2}+D_{3, x}^{4}\right) F \cdot F=2 F_{x t} F-2 F_{t} F_{x}+c\left(2 F_{x x} F-2 F_{x}^{2}\right)+6 F_{x x}^{2}=0 \tag{1}
\end{equation*}
$$

using the generalized bilinear derivative with the prime number $p=3$. Three classes of different rational solutions were obtained using rational polynomial functions. Moreover, 2 and 3D plots of the rational solutions were presented in [1]. The authors of [2] studied the generalized bilinear differential equation of the KdV-like

$$
\begin{equation*}
\left(D_{3, x} D_{3, t}+D_{3, x}^{4}\right) f \cdot f=2 f_{x t} f-2 f_{t} f_{x}+6 f_{x x}^{2}=0 \tag{2}
\end{equation*}
$$

and derived two classes of rational solutions to the resulting KdV-like equation. We note that when $c=0$ in (1), we obtain equation (2). In this talk we study equation (2) from the symmetry standpoint.

Results and discussion

We start by constructing the Lie point symmetries of KdV-like equation (2) by using the Lie invariance criteria [3, 4]. This gives us four dimensional Lie algebra L_{4} spanned by the four point symmetries. We then construct the commutator table for these four symmetries and on invoking Lie equations we obtain one-parameter groups of transformations. Thereafter, we perform symmetry reductions and derive group invariant solutions under each point symmetry. One such solution is the exponential function given as

$$
\begin{equation*}
u=e^{-\frac{1}{2} \varepsilon t^{2}}\left(C_{1} x+C_{2}\right), \tag{3}
\end{equation*}
$$

where ε, C_{1} and C_{2} are constants. In order to understand the physical meaning of the obtained solutions we present two and three dimensional plots.

Figure 1: The dynamics of the group invariant solution (3) at $\varepsilon=C_{1}=C_{2}=1$, furnishes a parabolic wave structure given in two and three dimensions. This wave structure has a significant application in electrical and electronics engineering. A parabolic antenna depicts an antenna that utilizes a curved surface parabolic reflector that has a cross-sectional shape. This parabola shape enables it to easily direct the radio waves. Besides, the most frequent used is a dish antenna or parabolic dish which has the shape of a dish. The main benefit of a parabolic antenna is the fact that it has high directivity [5].
In addition, the conserved quantities associated with the four symmetries are calculated using Ibragimov's theorem [6]. It is well known that the conserved quantities are very pertinent in physical sciences owing to their robust applications.

References

[1] Liu J.G., Yang X.J., Wang J.J. (2022) A new perspective to discuss Korteweg-de Vries-like equation. Phys. Lett. A 451:128429.
[2] Zhang Yi, Ma, W. X. (2015) Rational solutions to a KdV-like equation. Applied Mathematics and Computation 256:252-256.
[3] Ovsiannikov L.V. (1982) Group Analysis of Differential Equations. Academic Press, New York.
[4] Olver P.J. (1993) Applications of Lie Groups to Differential Equations. second ed., Springer-Verlag, Berlin.
[5] https://en.wikipedia.org/wiki/Parabolic-antenna.
[6] Ibragimov N.H. (2007) A new conservation theorem. J. Math. Anal. Appl. 333:311-328.

