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Abstract. The Fokker-Planck equation governing the probability density function (pdf) of a mechanical system can be readily 
discretized in state space using finite element analysis. However, even low-dimensional systems, such as a single-degree-of-
freedom Duffing oscillator with two states, lead to matrix equations of large dimension, and these systems of equations grow 
rapidly as the number of states increases. If multiple parameter values or initial conditions are to be considered, computation 
of the nonstationary response by standard integration techniques rapidly becomes impractical. We examine here the use of 
operator splitting, where the finite element matrices are formulated separately for the convection and diffusion terms in the FP 
equation, leading to a time marching scheme based on the resulting state transition matrices. It is found that the pdf can be 
computed much more efficiently using this approach than with, for example, an adaptive Runge-Kutta algorithm. 
 

Introduction 
 

The nonstationary probability density function (pdf) of a mechanical system is governed by the Fokker-Planck 
(FP) equation, a partial differential equation (PDE) which is readily obtained from a state-variable 
representation of the original equation of motion. This PDE can be discretized in state space using, for example, 
a Galerkin finite element formulation, resulting in an equation of the form ��̇(�) + ��(�) = �, subject to the 
initial conditions �(0) = ��. It is typically found that 100 elements are needed in each dimension of the state 
space to obtain a stable, accurate solution, resulting in approximately 10,000 degrees of freedom in the discrete 
problem. The problem size grows exponentially with the number of states in the system, and calculations for 
2-degree-of-freedom (DOF) systems with four states (two displacements and two velocities) generally remain 
impractical in most applications (such as in design, where repeated solutions are required). 

We have applied operator splitting to this problem by separating the convection and diffusion terms in the FP 
equation and discretizing them separately to produce two matrices, �� and ��, whose sum replaces � in the 
equation above. These are found to be much better conditioned than the original matrix; as a result, a state 
transition matrix (STM) can be computed for each of them. These are used to advance the solution by fixed 
time steps, using either a composite STM or a more accurate (Strang splitting [1]) algorithm. 

Results and discussion 
 

Preliminary results obtained with this approach are very promising. As an example, we consider the single-
DOF Duffing oscillator with negative linear stiffness studied by Spencer and Bergman [2]. Figure 1 compares 
a cross section of the stationary pdf to the exact solution, and shows the numerical solution for the pdf at a 
point computed with and without splitting. In this example, running on an x86 (notebook) processor, 
computation of the response for 4 linearized natural periods using an adaptive Runge-Kutta algorithm required 
548.8 minutes; with operator splitting, this was reduced to 4.6 minutes. 

 
Figure 1: Results for the Duffing oscillator: (left) superimposed contour plots of the nonstationary pdf at selected times; 

(right) growth over time of the pdf at the location of a local maximum stationary value. 
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