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Abstract. We investigate small in-plane motions of a slack catenary using the Rayleigh-Ritz method. Using assumed
modes and the Lagrangian approach, linearized equations with one holonomic constraint yield natural frequencies that
match simple experiments. However, if the mode shapes thus obtained are themselves used as assumed modes, the
approximation fails. A formulation that acknowledges nonlinear normal modes eliminates the constraint and gives the
correct frequencies again. This problem offers interesting insights into approximations, constraints, and linearization.

Introduction

A catenary is an inextensible chain that hangs between two fixed ends. Its equilibrium shape is a hyperbolic
cosine. Its in-plane oscillations have been studied by many authors before [1-5], using various approximations.
The difficulty in directly using assumed modes in a Lagrangian formulation (i.e., the Rayleigh-Ritz method) is
that the chain has a nonlinear pointwise inextensibility constraint involving spatial derivatives of the assumed
modes. We cannot easily express the displacements of the chain in both horizontal and vertical directions using
a complete basis of kinematically admissible functions. However, simple approximations are possible if we are
willing to do numerical integration in space to obtain various coefficients within the Lagrangian.
We begin by approximating the vertical motion as v(x, t) =

∑N
i=1 qi(t)ϕi(x), where the ϕi(x) are zero at

the endpoints of the catenary. Pointwise inextensibility yields a series expansion for the spatial derivative of
the horizontal displacement, i.e., ux(x, t). Integrating ux from one endpoint gives a u that need not be zero
at the other endpoint. This introduces a single scalar holonomic constraint on the qi’s. Now implementing
the Lagrangian formulation, we note that the potential energy in the Lagrangian is linear in the generalized
coordinates and cannot cause oscillations. The Lagrange multiplier corresponding to the holonomic constraint
plays that role. We obtain static equations that determine the Lagrange multiplier, and dynamic equations that
use that multiplier value to yield natural frequencies and mode shapes as in Fig. (1).
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Figure 1: In-plane mode shapes of a slack catenary.

We now come to a puzzle. When the modes shapes determined above are reused in a fresh assumed modes
calculation, the approach fails. First, the static equations used to find the Lagrange multiplier disappear; yet
that multiplier value determines the natural frequencies. Second, the nonlinear constraint equation suggests
that nonzero motion is impossible. Resolution lies in noting that the oscillations are along nonlinear normal
modes. Deviations from the eigenspace must be allowed. Incorporating the deviation in a fresh assumed modes
expansion and eliminating the holonomic constraint, we remove the Lagrange multiplier, introduce nonlinearity
in the potential energy, and recover the correct natural frequencies and mode shapes.
Our study offers several interesting insights into Lagrangian mechanics. It also, for the first time to our knowl-
edge, demonstrates use of the Rayleigh-Ritz method for this classical problem.
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