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Abstract. We present an analysis of a bistable piezoelectric energy harvester subject to random mechanical vibrations and 

with improved performance thanks to the use of a matching electrical network, that optimizes the energy transfer to the 

electrical load. The model exploits a stochastic differential equation describing the harvester, matching network and load 

dynamical system. Analytical methods and different numerical techniques are used for its solutions. Results show that, even 

for the case of random mechanical vibrations, the application of the matching network improves the performances by a 

significant amount. 

Introduction 
One of the main performance limitations for a piezoelectric energy harvester is the sub-optimal energy transfer from the 

mechanical source to the electrical load, a condition that can be conveniently represented as an impedance mismatch 

between the electrical equivalent of the entire electro-mechanical system and the load. This suggests to interpose a proper 

matching network between  the harvester and the load to eliminate the mismatch [1,2,3]. 

In the simplest case of purely sinusoidal vibrations, i.e. when their energy is concentrated at a single frequency, a relatively 

straightforward analysis of the harvester is possible [1]. However, a more physically sound description considers the 

vibration energy spreading on a relatively wide frequency spectrum, thus requiring the use of a stochastic process that, 

for a negligible noise correlation, can be conveniently modelled with a white Gaussian noise forcing term. 

In this contribution, we model a bistable piezoelectric energy harvester subject to random mechanical vibrations, and 

present novel results through analytical and numerical analysis. The mathematical model is derived from the properties 

of the mechanical part, from the constitutive equations of linear piezoelectric materials, and from the circuit description 

of the electrical load. The model includes nonlinearities in the mechanical elastic potential. The equations of motion are 

stochastic differential equations, here solved using various perturbation methods and different numerical integration 

schemes. Inspired by our recent work on the application of circuit theory to improve the efficiency of energy harvesting 

systems, we apply a LC matching network to the load [1,3], and we assess the advantage offered by the modified load in 

terms of output average voltage, output average power and power efficiency. 

Results and discussion 
We have performed Monte Carlo simulations for the bistable energy harvester with and without (resistive load) the LC 

matching network. The SDEs have been solved numerically using different numerical integration schemes, including 

Euler-Maruyama, strong order 1 stochastic Runge-Kutta, and weak order 2 stochastic Runge-Kutta [4]. The figure 

below shows on the left, the output voltage rms value for the harvester with matched load, versus the values of the 

matching 

network parameters L and C. Optimal values of the parameters maximizing the harvested voltage are clearly 

recognizable. The right part shows a comparison of the average harvested power by the harvester with resistive and 

matched load, versus the noise intensity. Optimum values of parameters of the matching network were chosen. The 

matched solution offers about nine times more power with respect to the simple resistive load. 

 

        
Left: Root mean square value for the output voltage vs. the LC matching network parameters. Right: Comparison of the average 

harvested power for the harvester with resistive load and with matched load, versus the noise intensity. 
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