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Abstract. We study the Kuramoto–Sakaguchi model composed by any N identical phase oscillators symmetrically
coupled. Ranging from local (one-to-one, R = 1) to global (all-to-all, R = N/2) couplings, we derive the general
solution that describes the network dynamics next to an equilibrium. Therewith we build stability diagrams according to
N and R bringing to the light a rich scenery of attractors, repellers, saddles, and non-hyperbolic equilibriums.

Introduction

For more than forty years, the paradigmatic system of N one-dimensional coupled phase oscillators, the Ku-
ramoto model [1], has been intensively studied to understand phenomena related to synchronization in bio-
logical, chemical, and electronic networks. Despite the simplicity of the dynamics of each oscillator (θ̇ = ω)
strong efforts should be dedicated to find analytical solutions for a network of nonlinearly coupled oscillators,
due to the high dimensionality of the system. Kuramoto showed a seminal solution giving rise to the prosper
application of the mean–field theory where N → ∞ with oscillators globally coupled. In contrast, accurate
results for the finite-size Kuramoto model remains a challenge due to the great number of equations involved,
nevertheless, the dynamics is richer. While in the global coupling the full synchronization is the only stable
equilibrium, in different topologies of the Kuramoto model multistability is allowed [2]. And, sustained by
Lyapunov function argument, the system would reach an equilibrium state as t→ ∞ [3].
Multistability, basin of attractions, and traveling waves are some of fundamental phenomena directly related
with equilibriums in variants of the Kuramoto model with both attractive and repulsive phase couplings, where
the oscillators do not collapse in a single phase although they synchronize in frequency. These phenomena are
also observed in real-world networks [4, 5, 6, 7]. Such manifestations are mostly studied in the continuous
thermodynamic limit and keep not yet well understood. Exact solutions for lower number of oscillators in the
Kuramoto model are mandatory in this study but they are still a topic of investigation.

Results and discussion

In order to shed some light on those problems we study the Kuramoto–Sakaguchi (KS) model [8], a general-
ization of the Kuramoto model, explicitly for a finite number of N identical oscillators symmetrically coupled
(G = GT , in matrix representation). In opposition of traditional investigations, where the time evolution of the
network is followed by the order parameter, we obtain solutions describing precisely the individual trajectories
of each oscillator when the system is close to an equilibrium. We present several numerical studies in a great
accordance with our theoretical predictions and focus in the role of non-hyperbolic equilibria in the general
dynamic behavior. More specifically, we determine the set of eigenvalues associated to each state identifying
the complete stability scenario of hyperbolic and non-hyperbolic equilibria for a finite number N of oscillators
and calculate the bifurcation these states in the thermodynamic limit.
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