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Abstract. We use machine learning to implement feedback linearization for the control of nonlinear discrete-time
systems. The proposed approach is based on physics-informed neural networks, thus implementing pole-placement and
feedback linearization in one step. To demonstrate the efficiency of the scheme we used a nonlinear discrete time model
for which the feedback linearization law can be derived analytically.

Introduction

Feedback linearization of nonlinear systems is arguably one of the most used nonlinear control techniques [1,
2]. Building in previous work [1, 2], we propose a Physics-informed machine learning (PIML) scheme that
learns a feedback linearizing control law and performs pole placement in one step for discrete time systems of
the form:

x(t+ 1) = f(x(t), u(t))

Thus we seek for a transformation S such that z = S(x) is coupled with a control law u = −cz = −cC(x) in
order to linearize the above system as:

z(t+ 1) = Az(t),

where A has the propoer set of eigenvalues to ensire stability [1].

Results and discussion

To illustrate the performance of the PIML, we consider the following system of discrete equations [1]:

x1(t+ 1) = exp(0.3x2(t))
√

(1 + x1(t) + x2(t))− 1− 0.4x2(t) + 0.5u(t)

x2(t+ 1) = 0.5ln(1 + x1(t) + x2(t)) + 0.4x2(t) (1)

It can be shown [1] that the sought transformation reads:

T (x1, x2) = [ln(1 + x1 + x2) x2] (2)

Then T1(x1, x2) = ln(1+x1+x2) in (2) is the desired feedback linearizing control law, where the closed loop
poles are governed by the eigenvalues of matrix A here set to k1 = 0.8405 and k2 = 0.0595. Figure (1), shows
the approximation of S obtained with the proposed PIML scheme. As it is shown, the scheme is able to learn
the transformation in (2) with a numerical approximation accuracy of the order of 10−3.
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Figure 1: Numerical approximation accuracy (NAA) between the theoretical sought transformation (2) and the
one learned by the PIML scheme. Panel (a) depicts the NAA for the first component T (x1, x2) and panel (b)
refers the same for the second component of T (x1, x2).
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