Effect of time-scale in the flow fluctuations on a sub-critical aeroelastic system

Varun H S^{*}, Sunetra Sarkar^{*,**}

[∗]*Department of Aerospace Engineering, Indian Institute of Technology Madras, Tamilnadu, India* ∗∗*Complex Systems and Dynamics, Indian Institute of Technology Madras, Tamilnadu, India*

Abstract. This study investigates the effect of time-scale in the flow fluctuations on a 2 DOF pitch-plunge aeroelastic system. The structure is supported by nonlinear soft springs and the fluid loads are evaluated using a semi-empirical model. The flow fluctuations are modelled as an OU process. It is seen that long time-scale noise advances the onset of intermittency but delays the onset of LCO when compared to short time-scale noise, presenting new design challenges.

Introduction

Stochastic noise has been known to play a major role in altering the dynamics of FSI systems[1, 2, 3]. They have been known to induce dynamical states like intermittency[2, 3] and change the jet-switching characteristics in the flow-field[1]. These studies show that the time-scales in the flow fluctuations are of utmost importance and hence, we investigate the effect of time-scale in the flow fluctuations on a sub-critical aeroelastic system. The structure is modelled as a 2 DOF pitch-plunge elastic system with nonlinear soft springs[4]. The fluid loads are calculated using the semi-empirical Wagner function[4]. The non-dimensional equations describing the aeroelastic system (with the flow fluctuations) take the form of an Ito SDE as given in Equation 1.

$$
d\vec{\mathbf{X}} = f(\vec{\mathbf{X}}, \tau; U) d\tau
$$

\n
$$
dU = \lambda (U_m - U) d\tau + \sigma dW
$$
\n(1)

where \vec{X} represents the system variables which include the auxillary variables needed to calculate the fluid load, τ the non-dimensional time, U the flow velocity. The flow fluctuations in U are modelled as an OU process [1] with mean U_m , time-scale parameter λ (1/ λ is the correlation time), W the Standard Wiener process and σ the noise intensity. Equation 1 is studied for two cases: $\lambda = 0.005$ (long time-scale); $\lambda = 0.5$ (short time-scale).

Figure 1: Pitch time series ($\alpha(\tau)$) for $U_m(= 6.29, 7.25)$ and $\lambda(= 0.005, 0.5)$

Results and Discussion

To study the effect of λ , the variance of the OU process in Equation 1 is taken as $1 \left(\frac{\sigma^2}{2\lambda} \right) = 1$. Figure 1 shows the pitch time series $(\alpha(\tau))$ for $U_m = 6.29, 7.25$. It is observed that for the initial conditions chosen (deterministically the system evolves to a LCO at $U = 6.29$), there is a delay in the onset of LCO as U_m is varied. The long time-scale case ($\lambda = 0.005$) has the system in a state of intermittency at $U_m = 6.29$, whereas at this U_m , the short time-scale case ($\lambda = 0.5$) evolves to the $\vec{0}$ state (Figure 1). However at $U_m = 7.25$, the $\lambda = 0.5$ case displays full-fledged LCO behaviour but intermittency persists in the $\lambda = 0.005$ case (Figure 1). Thus the long time-scale noise advances the onset of intermittency but delays the onset of full-fledged LCO when compared to the short-time scale noise. The time-scales of the input flow fluctuations affect the onset of different dynamical behaviour and hence is an important parameter for consideration during design.

References

- [1] Majumdar D., Bose C., Sarkar S. (2020) Effect of gusty inflow on the jet-switching characteristics of a plunging foil. *Phys. Fluids* 32:117105 1-17.
- [2] Aswathy M. S., Sarkar S. (2019) Effect of stochastic parametric noise on vortex induced vibrations. *Int. J. Mech. Sci.* 153-154:103- 118.
- [3] Venkatramani J., Krishna S. K., Sarkar S., Gupta S. (2017) Physical mechanism of intermittency route to aeroelastic flutter. *J. Fluids Struct* 75:9-26.
- [4] Lee B. H. K., Jiang L. Y., Wong Y. S. (1999) Flutter of an Airfoil with Cubic Restoring Force. *J. Fluids Struct* 13:75-101.