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Abstract. The ability to sense flows and estimate some features in the near field is very important for underwater robot.
Many species of fish can accomplish such sensing even when they are blinded using their lateral line or kinematics of fins.
The complexity and high (infinite) dimensionality of fluid flows around a swimmer require new methods for such flow
sensing. Recent advances on Koopman operator of a dynamical system combined with machine learning offers a new
way to extract useful information of the flow based on pressure or kinematic measurements from a swimmer’s body. We
present experimental and computational results of a trailing hydrofoil sensing and estimating the wake Strouhal number
and the distance of an upstream body using on board measurements.

Introduction

Objects moving in water or stationary objects in streams create a vortex wake. An underwater robot encounter-
ing the wake created by another body experiences disturbance forces and moments. These disturbances can be
associated with the disturbance velocity field and the bodies creating them. Essentially the vortex wakes encode
information about the objects and the flow conditions. Underwater robots that often function with constrained
sensing capabilities can benefit from extracting this information from vortex wakes. We consider the problem
of the estimation of the spatial location of an up stream obstacle or oscillating body in a flow past a pitching hy-
drofoil and a the reconstruction of the near body flow. It is assumed that pressure on the surface of the hydrofoil
can be measured at fixed locations on the body along with the pitch angular velocity of the hydrofoil. Using
time series pressure measurements on the surface of the hydrofoil and the angular velocity of the hydrofoil, a
Koopman operator can be constructed that propagates the snapshots of data forward in time. The modes from a
spectral decomposition of this operator then extracts important features from the measurements and can be the
inputs for machine learning to estimate features of the flows and obstacles.

Results and Discussion
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Figure 1: A Koopman operator is constructed
using pressure measurements from the surface
of the trailing body. The modes of this oeprator
are used to train a deep network to estimate the
obstacle distance.

Model reduction and reconstruction of reduced order models in such
complex dynamical systems where only limited data on observables is
available can be possible via the framework of the Koopman operator,
a topic that has attracted much attention in recent years [1, 2]. We pro-
posed a framework (see fig. 1) for sensing flows using measurements
from a body immersed in the fluid in [3]. In numerical simulations
of flow past an upstream body, pressure is measured on the surface
of a downstream pitching hydrofoil along with its pitch angular ve-
locity. Denoting the observables as g(t) = [P1(t), ..., PN (t),Ω(t)]T

where Pi(t) denotes the pressure on the foil at location i at time t and
Ω(t) denotes the foil angular velocity similarly at time t, the Koop-
man operator K is a linear operator K : L2 7→ L2 and propagates the
observables forward in time KT g(t) = g(t + T ). The eigenvalues
and eigenvectors (or the singular values and singular vectors) of this
operator extract features of the measurements. These feature vectors
are then used as an input to deep networks to estimate the obstacle
distance [3]. The results however go beyond the estimation of the dis-
tance to the obstacle as in [3], but instead show that reconstruction of
the flow in subdomain containing the trailing body is possible from
the Koopman modes obtained from observables from the hydrofoil.
These results are a significant addition to the literature on Koopman
modes and flow reconstruction since measurements are obtained from the body alone and not the fluid domain
and thus have relevance to autonomous robots.
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