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Abstract. The study of internal resonances of a system is crucial to investigate its stability. KAM (Kolmogorov
Arnold Moser) theory is a powerful branch of perturbation theory born to face the small divisors (resonances) problem in
hamiltonian dynamical systems. Its applicability to concrete physical problems is a well-known challenge because of the
extreme smallness required for the perturbation parameter. Here we consider an undamped nonlinear hinged-hinged beam
with stretching nonlinearity as an infinite dimensional hamiltonian system. We obtain analytically a quantitative Birkhoff
Normal Form, via a nonlinear coordinate transformation that allows us to integrate the system up to a small reminder,
providing a very precise description of small amplitude solutions over large time scales. The optimization of the involved
estimates yields results obtained for realistic values of the physical quantities and of the perturbation parameter.

Introduction

We consider the dimensionless nonlinear beam equation with stretching nonlinearity

utt + uxxxx −
(
m+

1

2π

∫ π

0
u2x dx

)
uxx = 0 , (1)

for t ∈ R and x ∈ [0, π], with the following hinged-hinged boundary conditions: u(t, 0) = u(t, π) =

uxx(t, 0) = uxx(t, π) = 0. Here
√
I/Au is the vertical displacement and m = L2P

π2EI
indicates the nondi-

mensional axial force, where L, I,A,E, P are, respectively, the length of the beam, the moment of inertia,
the cross-section area, the Young modulus, and the tensile axial force (possibly also negative entailing com-
pressive force). Being conservative, Eq. (1) has a hamiltonian structure. Indeed, by letting ω2

j := j4 +mj2

and φj(x) :=
√

2/π sin jx, respectively, denote the eigenvalues and the eigenfunctions of the Sturm–Liouville
operator (∂xxxx −m∂xx) on [0, π], the Hamiltonian can be expressed as
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∑

j≥1 ωjIj +
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, Ij :=

1
2(p

2
j + q2j ) , (2)

with q = (q1, q2, . . . , ), p = (p1, p2, . . .) spanning a suitable Hilbert space of sequencies. Then, given a smooth
solution t →

(
p(t),q(t)

)
of Hamilton’s equations, one finds that u(t, x) :=

∑
j≥1

qj(t)√
ωj
φj(x) is a solution of

(1). If the linear frequencies ωj are non-resonant, after a canonical change of variables close to the origin, the
Hamiltonian is in BNF (Birkhoff Normal Form) up to some order 2d > 0, namely H = N(I) + R(p,q),
where N(I) =

∑
j≥1 ωjIj + g(I) for some polynomial g of degree d in I and R = O(|(p,q)|2d+2). Since

the nonlinear term N is integrable, the BNF allows a precise description of the solutions with initial data
ε := |p(0)| + |q(0)| ≤ ε0 up to times |t| ≤ T0ε

−2d, for suitably small ε0 and T0. This immediately reads as a
stability result for Eq. (1) with ε-small initial data u(0, x) and ut(0, x). There are some results (see, e.g. [1]) on
the BNF for the beam equation (with nonlinearities different from (1)) but with no physical applications. Indeed
the typical problem in hamiltonian perturbation theory (especially for PDEs) is that the amplitude threshold, ε0
here, is very small.

Results and discussion

For m > −1 we prove that the frequencies are non-resonant up to order 4, which, in general, corresponds to
show that ωi±ωj±ωk±ω` does not vanish for suitable combinations of positive integers i, j, k, ` and± signs.
However, in the present case, due to the special form of the nonlinearity, the non-resonance condition reduces
to ωi−ωj ≥ c > 0 uniformly in i > j ≥ 1. Then we can put the system in BNF up to order 2d = 4. Moreover,
for 0 < |m| < 1 we are able to show that the frequencies are non-resonant up to order 6 (which reduces to
|ωi−ωj−ωk| ≥ c > 0 uniformly in i > j ≥ k ≥ 1), so that we can put the system in BNF up to order 2d = 6.
The main point here is that, by optimizing the estimates, we are able to find realistic values for ε0 and T0. For
example for a steel beam of length L = 2m, height 0.02m, P = −16.5kN and initial vertical displacement
2 · 10−4m (corresponding to m = −0.5, ε = 0.04) we have stability time length of 250s (18500 oscillations).
As far as we know, this is the first purely analytical result of this kind in hamiltonian perturbation theory for
PDEs.
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